
Software Engineering Disciplinary Commons Portfolio

Sriram Mohan

Dept. of Computer Science and Software Engineering
Rose-Hulman Institute of Technology

November 6, 2010

i

Contents

Introduction v

1 Teaching 1
1.1 Teaching Philosophy & Methodologies 2
1.2 Environment . 7

2 Teaching 13
2.1 Introduction . 13
2.2 Educational Context . 14
2.3 Our Course on Requirements 16
2.4 Textbooks . 19
2.5 Learning Model . 20
2.6 Evaluation and Discussion . 25
2.7 Conclusion . 26

Bibliography 29

Course Syllabus 31
CSSE 371 Syllabus - RHIT, Dr.Mohan 33

Homework Assignments 47
CSSE 371- RHIT- HW 1, Fall 2010 . 49
CSSE 371- RHIT- HW 2, Fall 2010 . 51
CSSE 371- RHIT- HW 3, Fall 2010 . 53
CSSE 371- RHIT- HW 4, Fall 2010 . 55
CSSE 371- RHIT- HW 5, Fall 2010 . 57
CSSE 371- RHIT- HW 6, Fall 2010 . 59
CSSE 371- RHIT- HW 7, Fall 2010 . 61
CSSE 371- RHIT- HW 8, Fall 2010 . 63
CSSE 371- RHIT- HW 9, Fall 2010 . 65

ii

Contents iii

Project Milestone Rubrics 67
CSSE 371- RHIT - Milestone 1, Fall 2010 69
CSSE 371- RHIT- Milestone 2, Fall 2010 71
CSSE 371- RHIT- Milestone 3, Fall 2010 73
CSSE 371- RHIT- Milestone 4, Fall 2010 75
CSSE 371- RHIT- Milestone 5, Fall 2010 77

Evaluations Letters 79
Evaluation Letter, Dr. Kagdi . 81
Evaluation Letter, Dr. Surendran . 83

Introduction

This portfolio documents my work as a part of the Software Engineering Dis-
ciplinary Commons. A Disciplinary Commons involves a group of educa-
tors from diverse institutions who teach within the same discipline meeting
monthly during an academic year to share, reflect on and document their
teaching. Participating in the commons has been an invaluable experience
and provided an opportunity to reflect on my teaching, course syllabus and
identify strengths and weaknesses and compare our practices with other par-
ticipants.

The goal of this portfolio is to document my teaching philosophy and provide
a platform to understand the rationale behind a course on Software Require-
ments and Specification. I have also included several appendices that provide
supporting information including my current syllabus, assignments, project
milestones and rubrics for evaluating said milestones.

v

Chapter 1

Teaching

Growing up, my childhood was filled with stories of my father and my aunt
tutoring their friends in high school and university. It has been constantly im-
pressed upon me, that the best way to learn something is to be able to teach
it to others. I completed my undergraduate studies in Computer Science and
Engineering in India. During this time, my opportunities to teach on a formal
basis were extremely limited. However, my residence used to be the hub for
students in my graduating class. I had a wonderful time exploring new con-
cepts in computer science & engineering and explaining them to my friends.
My aunt, impressed upon me the need to continue my education if I wanted
to pursue my passion for teaching.

I continued my doctoral education in Computer Science at the Blooming-
ton Campus of Indiana University (IU). My graduate education provided me
with several opportunities to observe and learn from exemplary teachers. As
a student, I took a class on “Teaching Computer Science”. The course helped
me develop an idea for the general principles of teaching and provided some
practical experience in teaching computer science. An important aspect of
the class was microteaching, in which we were required to prepare and lead
classroom sessions on various topics. Each session was followed by a critical
analysis and discussion led by faculty and staff from the IU School of Edu-
cation and the Office for Campus Instructional Consulting. This experience
was invaluable in my growth as a teacher.

I turned down the opportunity to receive funding via research assistantships
to focus on developing as a teacher through teaching related assistantships. I
served as the lead teaching assistant for our introductory course on Network-
ing Technologies. I developed and led various labs that introduced the students
to basics of computer networking. My zeal and passion for teaching and stu-

1

2 CHAPTER 1. TEACHING

dents was recognized by the lead instructor who recommended me to serve
as the teaching assistant for the undergraduate as well as the graduate ver-
sion of Software Engineering for Information Systems. I served as the teaching
assistant for this course for 5 years, delivering many lectures, leading class
discussions, mentoring and providing technical assistance to student teams
and student project managers. I was intimately involved in the conception,
design and development of a unique class that simulated software develop-
ment in the industry and exposed student to prevailing practices in the real
world. During the summer semesters, the Computer Science department at
Indiana University invited me to be a full time instructor. I served in this po-
sition by teaching C212 - Introduction to Software Development for four years.
I helped revamp the curriculum, by designing a) new labs to help students
understand the concepts discussed in class, b) lecture sessions that focused
more on interactive problem solving and c) a final project that tested their
ability to develop software. Students enjoyed my classes, resulting in posi-
tive student evaluations and increased class enrollments. These experiences
gave me a chance to experiment with different teaching methodologies and
helped hone my teaching skills and confirm my passion and desire for teach-
ing.

This led me to apply for positions at institutions that placed the highest
value on education, classroom interaction and instruction. I was encouraged
to apply for the position at Rose-Hulman by a Rose Alum who felt that I
would be a great fit at his alma mater. I was thrilled, when Dr. Cary Laxer ap-
proached me to schedule a phone interview and my interview visit to Rose-
Hulman. I had an incredible experience talking to the students, the faculty
and the staff. I had received offers to teach at colleges of similar stature, but
was convinced that Rose-Hulman was the place for me.

I still remember my early morning conversation with Cary, when he called
to make me an offer − I jumped at the opportunity and gave him a verbal
confirmation of my acceptance of the offer. The last two and half years have
reinforced my initial impression of Rose-Hulman. It is a privilege and a plea-
sure to teach at Rose-Hulman and I look forward to serving here for many
years.

1.1 Teaching Philosophy & Methodologies

“Develop a passion for learning. If you do, you’ll never cease to grow” - Anthony J.
D‘Angelo

1.1. TEACHING PHILOSOPHY & METHODOLOGIES 3

The ideas that I have implemented as a teacher had their initiation during
my days as a student, observing teachers who have left a deep impression on
me. These ideas continue to be refined with my own experience as a teacher
and as a mentor to high school students. The most important observation
I have had is that good teachers do not concentrate on effective teaching but on
effective learning. This is something that I have taken to heart and apply to all
facets of student learning.

Learning:

Be it the theoretical aspects or the more engineering/system oriented aspects
of Computer Science, it is my belief that it is not enough for students to un-
derstand a particular concept, and be able to repeat it from rote memory.
Instead, students must develop the ability to apply what they have learned.
I believe that a student’s comprehension of the concepts is greatly enhanced,
if they are engaged with the material. As such, I utilize a number of active
learning techniques in the classroom including:

1. Case study discussions: In my classes on software engineering, where
context is key, I introduce case studies from industry/academia that de-
tail software product success stories and failures. Students are expected
to prepare a pre-discussion report that is due before the class session.
During the class session, we analyze the case study from the perspec-
tive of the concepts learned in the classroom and we try to identify the
a) rationale behind the failure, b) key reasons behind the success of a
strategy and c) mechanism to improve the software process. These case
studies provide the student with an opportunity to apply their knowl-
edge by reflecting on a real world example.

2. White board problem solving: I tend to make use of end-of term group
projects in my classes. To encourage group work and engage the stu-
dents in the classroom, I routinely ask student groups to work on a
problem, using the various whiteboards / flipcharts around the room.
The students are required to solve the problems as a group in a specified
period of time and then reflect on the solution to the classroom. This
technique helps a) develop a group identity and b) develop a sense of
cohesiveness while simultaneously improving their presentation skills.

3. Mock Projects: I have used mock projects in the classroom to provide
context to our discussions. This technique is extremely useful in courses

4 CHAPTER 1. TEACHING

on software engineering such as Software Requirements. Rather than
just teaching students the art of gathering and specifying requirements,
I have organized the discussion around project scenarios, where my
teaching assistants and I play the role of client stakeholders and the stu-
dent teams act as the software developers. The mock projects provide
students the ability to apply the software management and develop-
ment practices they learn in the classroom. It also helps them identify
the techniques that are applicable to various project situations. Com-
puter Science is a rapidly changing field and the project scenarios are
selected with an eye towards exposing students to new practices and
software technologies.

4. Live programming sessions: I believe that to learn the art of programming,
the student must a) understand the syntax of the programming lan-
guage and b) learn to solve a problem using said programming lan-
guage. In my experience as a teacher, I have noticed that student typ-
ically find it difficult to learn the latter. To help students get over this
hump in my class on database management, I organize Live program-
ming sessions where we write database scripts together as a class with
the evolving solution on a projector and the instructor (me) acting as
the driver of the solution.

5. In-class labs: I organize the class in a studio format and intermingle the
lecture with a lab component. The class is organized in ten-minute ses-
sions with a lecture on a concept alternating with a lab where the stu-
dents have to a) implement said concept as a part of a scaffold or b)
apply the concept to solve a problem.

6. Solve a Problem: As a part of the class discussion, students either indi-
vidually, or as a group solve a problem and thus learn how the concept
is used and how to apply it. The critical idea in this technique is that each
individual/group contributes only one step in the solution. The next step in
the solution comes from a different student/group. This iterative process is
repeated until the problem is solved. Initially, students were afraid of
making mistakes and were reluctant to speak up. To get around this, I
helped them understand that every person including the teacher makes
mistakes and they were not going to be penalized; the more important
thing was to learn from the experience. Students have indicated that
they enjoy this segment of the class and that it has also helped shy stu-
dents actively participate in class.

1.1. TEACHING PHILOSOPHY & METHODOLOGIES 5

7. Research Reflection: This is similar to the notion of a case study discus-
sion and is a technique that I have used in advanced electives. Students
are required to read research papers from journals and peer-reviewed
conferences. Students are expected to prepare a pre-discussion report
that is due before the class session. During the class session, we analyze
the paper, identify and discuss a) the key contributions b) advantages
& disadvantages of the proposed techniques and c) future research di-
rections. The papers provide the students with an opportunity to learn,
reflect and stay current on research. I have supplemented this activity
by requiring students to propose and implement extensions to these
techniques as a part of their end-of term research projects.

8. Written Reflection: Reflective exercises where students, write a couple
of paragraphs in their own words and then share them with the class.
This provides some insight into their ability to comprehend the con-
cepts covered in the classroom.

9. Daily Quizzes: This was an idea; I was introduced to by Dr. Curt Clifton.
This model is based around the concept of “Test First Teaching” 1 in-
troduced by Dr. Cheryl Dugas and Dr. Mark Ardis. I have expounded
more on my take on “Test First Teaching” in the next page. I have led
the successful introduction of Daily Quizzes in the following classes : a)
Software Project Management, b) Software Requirements & Specifica-
tion, c) Advanced Databases & d) Software Quality Assurance. I have a
few objectives in mind, when I write my quizzes:

• A mechanism for me to evaluate whether the students have under-
stood the concepts that I covered in class. This provides me with
immediate feedback at the end of the day. If a majority of students
answer a particular question incorrectly, I re-teach the concept in
the next class.

• A mechanism for the students to take notes on the important con-
cepts of the class.

• A method for me to get to know the students better. I usually put
in an optional personal question such as “Name your favorite place
to visit”.

1Mark A. Ardis and Cheryl A. Dugas. Test-first teaching: Extreme programming meets
instructional design in software engineering courses. In 34th ASEE/IEEE Frontiers in Education
Conference. IEEE, 2004.

6 CHAPTER 1. TEACHING

• I count it towards participation points. It gives the shy students an
opportunity to have their thoughts heard.

To further encourage students to apply concepts confidently and in in-
novative ways, I have used incentives such as extra time in assignments and
extra credit. The emphasis on active learning requires each class session to be
planned in a careful manner. As a computer scientist, I like algorithms and
I follow an algorithmic procedure while creating a class session. The proce-
dure detailed below forms the basis for my take on “ Test First Teaching”:

1. Identify the learning outcomes for the class session.

2. Identify the concepts to be conveyed to help the students understand
the outcomes.

3. Identify the teaching techniques that work for each concept.

4. Identify the in-class activities to best convey the concept.

5. Identify a mechanism to assess the student’s comprehension of the con-
cepts.

6. Connect the activities into a classroom session.

Reinforced Learning: I am an avid proponent of a three-tier model of re-
inforced learning. Each technique covered in class using active learning ex-
ercises is augmented with a homework assignment practiced using project
based scenarios and personas. The students are then required to work on a
end of the term project to provide them with an opportunity to directly apply
the concepts they have learned.

Keeping with my core principle of effective learning, my projects and ex-
ams, focus on critical thinking and verify whether a student has understood
the material. It is important for students to develop the ability to reason and
think about solutions. To develop this aptitude, projects are initially seeded
with suggestions to get the students thinking about possible solutions. I help
student groups divide the project into significant milestones; to enable stu-
dents to develop problem-solving skills utilized in complex projects. During
the later stages of the term, this initial harness is slowly removed as students
get more comfortable dealing with sizable projects. During weekly milestone
meetings, I encourage students to reason about the chosen strategy, discuss

1.2. ENVIRONMENT 7

its merits and demerits and create a plan of action for the subsequent week.

I believe that exams, if used carefully, are a good way to gauge student
progress. My exams focus on a student’s ability to apply a concept and do
not force the student to recite from memory. For instance, in my “Introduc-
tion to Database Systems” course, rather than asking students to state the
definition of Entity Relationship Diagrams - a key component of database
design; the exam problem, provides the student with a real life scenario, that
students have to think through and solve - the entities they have to create,
the relationships that need to be identified and the constraints that need to
be imposed on the data. In essence, I have strived to model my exams to cre-
ate a realistic application scenario for the knowledge they have gained in the
classroom.

1.2 Environment

I am fascinated by Computer Science and it is important for me to convey and
communicate this passion for the field to my students. One of the goals I have
for my classes is to create an environment, which challenges and stimulates
students. I want my students to experience an engaging, interactive, energetic,
dynamic and comfortable learning environment. I am a huge proponent of active
learning as laid out in the previous section. The use of various active learning
exercises helps create a very engaging environment. I rarely “lecture” in my
classes. I firmly believe in involving the students in the classroom − be it via
a discussion or via problem solving.

I have frequent seminars in my classes wherein we talk about the rapid
strides that are being made, the research that is being carried out, the ex-
citing opportunities that are available, and how students can make a differ-
ence in the field. I have used these seminars to talk to students about my
own research in information security and privacy, the challenges involved,
its importance and how they can get started with research. I have encour-
aged and helped students apply for “Research Experience for Undergradu-
ates” programs at several research oriented schools. I have a practice of invit-
ing guest lectures from the industry and academia to my classroom. I have
used industry guest lectures to help supplement the software engineering
practices I convey in the classroom. Guest lectures from academia (primarily
from Indiana University - my alma mater and Purdue University) have been
very useful in exposing our students to the latest research trends in the areas
of Databases, Software Engineering and Human Computer Interaction. Stu-

8 CHAPTER 1. TEACHING

dents have welcomed my initiatives to provide them with this opportunity.
For instance,

• “Sriram was always enthusiastic about the subject and went to great lengths
to make the course more informative. For instance, he gave us interesting real-
world examples to read and had guest speakers come to talk to us about the
subject”

Each student is different and brings a unique perspective to a class. Un-
derstanding the student is very important to me as it helps me relate to them,
gauge their knowledge and build on it in class. Learning is individual and
is content and context specific. As a teacher, I am sensitive to these factors
and adapt my teaching methodologies to suit the material being covered and
the students in the class. Teaching has multi-faceted goals and is not just re-
stricted to classroom activities such as explaining course material, enriching
student knowledge, but is also about molding an individual and maximizing
potential. The latter requires the teacher to establish a good rapport with the stu-
dents. From my experience both as a student and as a teacher, I have realized
the importance of the ‘student-teacher’ comfort factor in enabling students
to approach the teacher with problems they might be facing. I have always
welcomed frank and open discussions with my students and have used my
experience to point them in the right direction. Students have appreciated
my efforts to get to know them. For instance,

• “He has always been available to help me when I have needed him, but has
come to me whenever he sees me in the lab to check up on me and make sure all
is well. He is an outstanding professor and an amazing person. I look forward
to future classes with Sriram”

• “I really believe Sriram made this class exciting and relevant for me. His teach-
ing methods were adaptive to students needs and he did an excellent job lis-
tening and adjusting to what was expected/needed. He exhibited an excellent
knowledge of the material and was always available. This was an excellent
course”

• “He taught as if I was the only one in the room... Whenever I missed class he
was always willing to meet with me to make it up. He would walk through the
daily quizzes with me and make sure I understood everything before moving
on to the next subject”

1.2. ENVIRONMENT 9

Figure 1.1: An Example of an XKCD Cartoon Strip used in the Class

I have used humor in the classroom and outside the classroom to help
create a comfortable learning environment. I have picked up on the depart-
ment tradition of “cartoon of the day”. These cartoons are from a variety of
sources, but as is common in the Computer Science arena, I tend to favor
Dilbert and XKCD .2 The comic strips are selected with a nod to the topic
under discussion. For instance, while discussing SQL Injection attacks in my
databases class, I have incorporated the XKCD Cartoon Strip shown in Fig-
ure 1.1.

I have always viewed teaching as a collaborative learning process. I let my
students know that their opinion and thoughts are valued and always welcome in
my classroom. To encourage students to reflect on the classroom practices,
and to provide me with regular feedback, I encourage students to stop by
my office with any feedback they may have. I have also setup an anonymous
feedback form on Angel. This feedback form is configured with an agent,
that sends an email to me when a student provides feedback on the class.
I have a point of responding to students about their concerns in the next
classroom session. I provide my response to the feedback and explain the
rationale behind the change or the lack thereof in the class.

Dr. Kay Cee Dee introduced to me the practice of a plus-delta assessment.
I perform two plus-delta assessments on the course and my instruction during
a quarter. The first session is conducted at the end of Week 3 and the sec-
ond at the end of Week 6. These provide the students with the opportunity to
reflect about the class and provide me with additional feedback. These evalu-
ations - both good and bad- have led me to introspect on my performance as a

2Dilbert is available from http://www.unitedmedia.com/comics/dilbert/. XKCD is available
from http://xkcd.com/

10 CHAPTER 1. TEACHING

teacher, enabling me to refine my teaching to better suit my students. Student
have indicated their immense satisfaction with this process. For instance,

• “Also great is how he listens to and looks for feedback related to the course.
He gives 2-3 plus-delta surveys throughout the quarter that allow us to give
feedback. He takes these seriously and actually makes changes to the course”

I have regular evaluations(biweekly in my design courses) in my classes,
during which I meet with students individually and provide them feedback
on their performance. During the evaluations, I discuss concrete short-term
and long-term goals for the student and inculcate a sense of personal responsi-
bility towards achieving them. The personalized attention given to each stu-
dent has given weaker students a sense of belonging and has enhanced their
learning. For instance,

• “Sriram has helped to hone my abilities as a software engineer through his
helpful and thorough feedback, as well as through his dedication and willing-
ness to spend time guiding me when I needed it. ”

• “I have been able to approach Sriram with my own goals and he has given great
advice.”

I believe I have been successful in creating a welcoming and engaging
classroom environment, where students have a sense of ownership and re-
sponsibility towards their learning. My course evaluations reveal that stu-
dents appreciate and welcome the rapport that I have developed with them.
For instance,

• “He is an asset to the department. I have never had a professor here that cared
about the material, cared about the welfare of the students, knew about the
material, and was able to communicate with the students to the level he could”

• “He was great. He was very interactive with the students. Each quiz had a
personal question on it so he got to know us better. He was always available
outside of class to help or chat with and was really interested in us as people.
His teaching methods were good and he always had material ready that he
wanted to cover. He moved through the content quickly in class without it
appearing like he was in a rush - he still had time to stop and answer questions”

• “ Sriram was a good teacher because he is passionate and makes you do work.
Doing is what teaches me the most and his methods helped me out signifi-
cantly”

1.2. ENVIRONMENT 11

• “Sriram is a great asset to the department. He is always available for help and
connects well with students. I’ve learned a lot from him about requirements
and database”

This comfortable, yet intellectually stimulating environment has enhanced class
participation and rekindles their curiosity about the subject and increases
learning. To conclude, as a teacher I believe that

“The mind is not a vessel to be filled, but a fire to be kindled - Plutarch”

Chapter 2

Teaching

2.1 Introduction

The vital role played by software requirements in the eventual success or
failure of a software product has been document by research through the
years [6, 7, 14, 19]. A study by the Standish Group[1] paints a very gloomy
picture of the state of the software industry. The report reveals that 31% of
projects will be canceled before completion and that 52.7% of the projects will
cost about 189% of their estimates. The report also identifies three common
factors behind these sobering numbers:

• Lack of user input (13 % of the projects)

• Incomplete requirements and specifications (12 % of the projects)

• Changing requirements and specifications (12 % of the projects)

The report also duly identifies several factors that were common to suc-
cessful projects. The three most important factors that were commonly cited
include:

• User involvement (16% of the projects)

• Clear statement of requirements (14% of the projects)

• Support from upper management (12% of the projects)

A recent study[22] of software organizations in the United States and
Australia reveal that requirements continue to be a problem for software de-
velopment and one of the most common causes of runaway projects.

This problem is further compounded by the cost associated with fixing
requirement errors. “If a unit cost of one is assigned to the effort required to detect

13

14 CHAPTER 2. TEACHING

and repair an error during the coding stage, the cost to detect and repair an error
during the requirements stage is between five to ten times less” [10].

Software requirements engineering is commonly taught under the aegis
of software engineering. The emphasis placed on software engineering in un-
dergraduate education is varied - ranging from optional, to one or two course
sequences in software engineering, to coverage through a senior capstone
project, to complete degree programs. An analysis of current undergraduate
curriculum reveals the following themes:

1. Students typically do not encounter issues of large scale requirements,
design, or other principles until their senior year [15].

2. A lack of emphasis on the importance of requirements in computer sci-
ence education (Most programs tend to cover this area using a couple
of class periods) [12].

3. Use of simulated project examples with faculty clients to convey the
art/science of requirements in software engineering programs. The sim-
ulated experience, while beneficial does not provide the student with a
realistic flavor of client-developer interaction and tends to mask some
of the challenges in requirements elicitation [12].

As Walker et. al point out [23] “the process of software development is
learnt by developing software under conditions similar those used in indus-
try”. The importance of using real clients is further confirmed by [2] and
[8]. The rest of this paper describes our experiences with a new approach to
teaching requirements engineering. This course utilizes a three tiered model
of learning and emphasizes hands-on experience with various facets of re-
quirements engineering through interaction with real clients with real needs.

2.2 Educational Context

It is important to understand the educational context within which this new
course on software requirements has been implemented. We are a four year
engineering college with an emphasis on undergraduate education. Currently
our department offers undergraduate programs in computer science and soft-
ware engineering. As a part of these programs, graduating software engi-
neering students are required to complete a year long senior capstone expe-
rience. This experience requires students to work on teams of about four stu-
dents on a project for a client to understand the need for, design, and develop
a system that meets the identified needs, and to deliver and refine the system

2.2. EDUCATIONAL CONTEXT 15

in response to feedback about those needs. Past examples include compa-
nies like Microsoft, Omni Software, Turner Broadcasting, Mayo Clinic, Naval
Surface Warfare Center, etc.

To help educate students on the skills necessary for a successful senior
capstone experience and to provide them with a sound background in soft-
ware engineering, we require our students to take a series of courses on the
following subject areas:

1. Quality Assurance

2. Requirements and human computer interaction

3. Project Management

4. Architecture and Design

5. Construction, Maintenance and Evolution

6. Formal Methods

Over the past couple of years, in order to create an experience similar to
those faced by software professionals and to provide our students with more
opportunities to work with real clients, we reorganized some of the above
courses into a Junior Design Sequence. The courses that comprise the junior
design sequence share a common project (similar in idea and execution to
that of the senior capstone experience). These courses1 include the following:

1. Requirements and Human Computer Interaction

2. Project Management

3. Architecture and Design

4. Construction, Maintenance and Evolution

It must be noted that students in the computer science program have the
option of pursuing either a senior capstone experience or a senior thesis to
complete their graduation requirements. However, irrespective of this choice,
the computer science students are required to participate in the junior design
sequence through the following courses

1It must be noted, that software engineering students would have received a background
in quality assurance fundamentals including test-driven development, metrics and quality
assurance before they begin the junior sequence.

16 CHAPTER 2. TEACHING

1. Requirements and human computer interaction

2. Architecture and Design

To align the Junior Projects with the classes the students are taking, we fol-
low a hybrid process. This begins with classical requirements elicitation and
documentation, where the students also learn to interact with project stake-
holders and hone their verbal and written communication skills. The teams
then move into a more iterative development process, regularly delivering
successively more refined systems and documentation.

The junior projects tend to have a smaller scope than a traditional se-
nior capstone experience. And because the requirements phase is more struc-
tured, Junior Projects can sometimes accommodate projects that might be
less clearly defined at the outset. For Junior Projects we favor proposals that
can be implemented using object-oriented languages and systems. This con-
straint supports the educational outcomes of our Software Architecture and
Design course, which emphasizes object-oriented design patterns.

2.3 Our Course on Requirements

We established a curriculum based on our experiences in the industry and
by surveying current requirements analysts and software engineers. Given
the nature of courses that followed our course in the junior design sequence,
we organized the student learning outcomes to target areas of software engi-
neering that highlighted working with the end user and other stakeholders
to elicit their needs, define the features and develop a usable interaction ex-
perience. Accordingly, the course had the following high level objectives.

Students who successfully complete the course should be able to:

1. Explain the role of requirements engineering and its process.

2. Formulate a problem statement using standard analysis techniques.

3. Determine stakeholder requirements using multiple standard techniques.

4. Produce a specification with functional and non-functional requirements
based on the elicited requirements.

5. Decide scope and priorities by negotiating with the client and other
stakeholders.

6. Manage requirements.

2.3. OUR COURSE ON REQUIREMENTS 17

7. Apply standard quality assurance techniques to ensure that require-
ments are: verifiable, traceable, measurable, testable, accurate, unam-
biguous, consistent, and complete.

8. Produce test cases, plans, and procedures that can be used to verify that
they have defined, designed and implemented a system that meets the
needs of the intended users.

9. Design and prototype user interfaces to validate requirements.

10. Prepare and conduct usability tests to evaluate the usability, utility and
efficiency of the developed user interface.

To meet the above learning outcomes, the course covered the following
topics:

• Requirement Preliminaries

– Why requirements?

– Role of requirements in the software life cycle

– Responsibilities of a software team

• Problem Analysis

– Identifying need and defining a problem

– Problem statements and formats

– Root cause analysis

– Domain modeling

– Personas

• Understanding Needs

– Problems in obtaining requirements

– Needs versus features versus requirements

– Interviewing

– Brainstorming

– Storyboarding

– Data gathering and analysis

18 CHAPTER 2. TEACHING

– Requirement workshops

• Defining and Refining the Software System

– Use cases
– Vision document
– Non-functional requirements
– Ambiguous requirements
– Assessing requirements quality

• Scope Management

– Scope triangle
– Managing clients
– Traceability
– Managing change

• Interaction Design and Prototyping

– What is interaction design?
– Cognition
– Low fidelity prototyping
– high fidelity prototyping

• Evaluation

– Usability testing
– Analytical evaluation
– Evaluation frameworks

• The Transition

– Requirements to design
– Requirements to testing

We have refined the list of topics mentioned above over the last three
years, based on feedback we have received from students, alumni and our
industry board of advisors. The transition from requirements definition to
system design can be a smooth process if handled in the right manner. We
are currently considering the introduction of system sequence diagrams, and
operation contracts to assist in the transition of user requirements to provide
an ideal launch platform for our course on software architecture and design.

2.4. TEXTBOOKS 19

2.4 Textbooks

A review of books used in various schools indicates the following books are
commonly used:

1. Software Engineering by Ian Sommerville (2010) [21]

2. Software Engineering - A Practitioner’s Approach by Roger Pressman
(2009) [18]

These two seminal books provide an overview of software engineering,
but do not provide an in-depth coverage of the various stages of the soft-
ware development life cycle. For instance, their coverage on requirements is
restricted to a couple of chapters and was not sufficient for our use. Good
books on requirements are hard to come by. Our search led us to consider the
following books:

1. Requirements Engineering, Processes and Techniques by Gerald Kotonya
and Ian Sommerville (1998) [9]

2. Managing Software Requirements: A Use Case Approach by Dean Leff-
ingwell and Don Widrig (2003) [10]

We decided to use the Leffingwell & Widrig text [10] as our primary text
due to the in-depth treatment of the list of topics under consideration for the
class and the use of a consistent case study throughout the book to explain
the various facets of requirements engineering.

The role of prototyping and user interfaces in removing barriers to re-
quirements elicitation is well documented. Our desire to expose students to
interaction design as an integral aspect of requirements engineering led us to
consider the following books:

1. Interaction Design: Beyond Human Computer Interaction by Helen Sharp,
Yvonne Rogers and Jenny Preece (2006) [17]

2. Designing the User Interface - Strategies for Effective Human Com-
puter Interaction by Ben Shneiderman and Catherine Plaisant (2009)
[20]

We adopted the text by Sharp, Preece & Rogers [17] as it provides an
in-depth coverage of interaction design and evaluating user interfaces. Ad-
ditionally, the conversational writing style and the use of examples makes it
very approachable to undergraduate students in computer science.

20 CHAPTER 2. TEACHING

2.5 Learning Model

Gathering requirements is as much art as it is science. There is no magic
formula that can be applied to understand the need behind a system and
document the features required in a software system. The technique to use
depends on several factors including a) the type of system, b) the technical
know how of the clients and the end users, c) the geographical location of the
stakeholders. It is not enough to teach students the problems with gathering
requirements, the techniques used to elicit, capture, organize and trace re-
quirements. Hands-on experience is particularly important to help students
understand the finer details of requirements elicitation. With this in mind, we
decided to utilize a three-tier learning model to provide numerous opportu-
nities for our students to practice and develop a mastery of these vital skills.
The three tier model includes the following:

1. Tier 1 - In-class Elicitation

2. Tier 2 - Elicitation via Homework Projects

3. Tier 3 - Elicitation through Junior Design

Tier 1 - In-class Elicitation

We believe that a student’s comprehension of the material is greatly enhanced
when they are engaged with the material. Each and every technique / con-
cept covered in the class is coupled with suitable active learning exercises
that provide a chance for the student to apply the knowledge gained in the
classroom.

A common technique utilized in the classroom is the notion of personas;
we combine this with mock projects in the first tier of our learning model.

• Mock Projects: We have used mock projects in the classroom to pro-
vide context to our discussions. We have organized the discussion on
requirements elicitation around project scenarios, where the teaching
assistants and the course instructors play the role of client stakehold-
ers and the student teams act as the software developers. The mock
projects provide students the ability to apply the software management
and development practices they learn in the classroom. It also helps
them identify the techniques that are applicable to various project sit-
uations. We provide the students with a brief product statement and
the student teams then identify the needs, features and requirements as

2.5. LEARNING MODEL 21

we work our way through the various elicitation techniques and other
facets of requirements engineering and interaction design.

Computer Science is a rapidly changing field and the project scenarios
are selected with an eye towards exposing students to new practices
and software technologies. For instance, here is a problem statement
we used last year:

A system that integrates micro-blogging services like twitter to run in-class
assessments and to gather feedback during class. This could be generalized into
a system that integrates with PowerPoint and helps gather student feedback in
classes. Faculty can conduct quizzes, gather data via polls, and conduct plus /
delta evaluations.

• Personas: A software engineering professional will encounter a wider
variety of clients. To give our students a sense of how clients (who think
differently and approach problems differently may behave), we devel-
oped various persona’s [3] (engineers, marketing managers, techno-
phobes and people from different cultures). Students were provided
with a description of these persona’s and trained faculty played the
roles of people with these persona’s and students were then required to
work in groups to elicit requirements of a very small project. We have
enclosed a description of a sample persona:

Shanice: Went to Indiana University as an undergraduate, majoring in Eco-
nomics with a minor in Chemistry. Then she started working in the Project
Management Department at Eli Lilly in Indianapolis. During her time as
manager, Shanice obtained a MS in Information Systems from Kelley School
of Business in Indianapolis. She is currently managing a project to change the
software for pharmaceutical research and production systems.

Tier 2 - Elicitation via Homework Projects

We identified homework assignments as a valuable resource to provide stu-
dents with more opportunities to practice and reflect on requirements gath-
ering. We designed a series of assignments on the simple scenario provided
below:

Bank de Fleur was established in 1875 to assist employees of Fleur Polytechnic
to manage their money and investments. It has now grown to be one of the most suc-
cessful banks in the Wabash Valley. Bank de Fleur has ATM’s for convenient access
at various locations on campus and in several locations downtown and the adjoining

22 CHAPTER 2. TEACHING

rural areas.. They have recently released plans on redesigning and updating their
ATM software to enable a better user experience for their customers and enhance the
overall security.

We enlisted our teaching assistants to represent the bank’s management
and IT divisions. We also identified some students participating in the senior
capstone experience to play the role of the Bank’s customers. Each teaching
assistant was provided with a list of features and they were instructed to
answer only the questions posed by the students.

Feedback was provided by the assistants at the end of an interview ses-
sion on the student’s approach, the questions that were asked and the ques-
tions they should have asked. The course instructor provided additional feed-
back at the very end. The assignments were designed to help the students
gain experience in the following areas:

1. Creating a problem statement, identifying stakeholders and constraints

2. Identifying features and tracing features to needs

3. Creating storyboards, data flow diagrams and domain models

4. Identifying actors and creating and refining use cases for the high pri-
ority features

5. Creating low fidelity prototypes using post-it notes for the identified
use cases.

6. Identifying supplementary specifications such as usability, reliability
and performance requirements. Students are also required to identify
usability violations on the prototypes from the previous assignment
based on the usability requirements and make the necessary changes

7. Developing acceptance test cases based on the identified use cases.

8. Specifying usability and user experience goals

9. Performing usability tests and re-design based on user feedback

Copies of the assignments have been included in the Appendix.

2.5. LEARNING MODEL 23

Tier 3 - Elicitation through Junior Design

The Junior design sequence is the final tier of the learning model. The home-
work assignments and in-class activities were designed to help students ap-
ply elicitation and management techniques as they work with real clients on
a project. We gather project proposals throughout the year from alumni, from
companies that hire our students, from not-for profit organizations and from
the campus community. It should be noted that these organizations do not
pay a fee to participate in the junior design sequence and are appraised of
the educational objectives associated with the junior design sequence.

The projects are made available to the students and student opinion on
project / team preferences is taken into account in determining the final list
of projects. It must be noted that each team (composed of 3 - 4 members)
has its own client and project. The team is retained for the entire sequence of
classes that comprise the junior design sequence.

Each team is also assigned a teaching assistant who functions as a project
manager and provides the team with valuable guidance as they navigate
the development lifecycle. Each team has weekly meetings with their client
to update them on their progress. Teams also have weekly meetings with
their project manager and instructor (if necessary). Agendas and reports are
maintained for each meeting, and teams are also required to provide their
manager and instructor with weekly stop light reports. The manager has a
responsibility similar to a first line manager in a professional situation. Of
course, the manager cannot literally fire and hire students, or suggest raises
or salary reductions. However, the manager will periodically evaluate each
member of the team. This evaluation will be given strong consideration in
determining the individual grade for the project.

To help the student teams as they worked on their projects, we divided
the work into five distinct milestones as follows

1. Milestone 1: Current System Analysis, Client Stakeholder Analysis, Fea-
ture Listing & Problem Statement.

2. Milestone 2: Use Cases, Data Flow Diagrams & Domain Models

3. Milestone 3: Supplementary Specifications:
(Non-functional requirements) & Initial user interface design

4. Milestone 4: Change Control Plan, Coding Standards & Acceptance Test
Cases and Plan

24 CHAPTER 2. TEACHING

5. Milestone 5: Usability Test Plan, Test Report and Revised Interface De-
sign

Teams were required to make changes as necessary to various milestones
to keep the documents up to date with changing requirements. Students were
also encouraged to maintain electronic journals as a reflective exercise. We
have also experimented with peer reviews of requirements specifications by
other project teams and teams from the senior capstone experience. Details
of the rubrics used to grade the milestones and the content of the various
documents have been included in the Appendix.

Teams were also strongly encouraged to receive feedback on the various
milestones from their project managers. We do require teams to turn in a draft
to the manager a week prior to the final submission. It must be noted that we
had to carefully schedule homework assignments and milestone deadlines to
ensure students had sufficient time to receive and incorporate feedback from
their homework and in-class exercises on the project.

Case Study Discussions

The final component of our learning model was the use of discussions revolv-
ing around case studies. We introduced case studies and papers (pertinent to
requirements) from industry/academia that detail software product success
stories and failures. Students are expected to prepare a pre-discussion report
that is due before the class session. During the class session, we analyze the
case study from the perspective of the concepts learned in the classroom and
we try to identify the a) rationale behind the failure, b) key reasons behind
the success of a strategy and c) mechanisms to improve the software process.
These case studies provide the student with an opportunity to apply their
knowledge by reflecting on a real world example. Our list of case studies
include the following

1. BAE Automated systems: Denver international airport baggage han-
dling system [13]

2. Why (some) large computer projects fail ? - An analysis of the FAA
Advanced Automation System [5]

3. When professional standards are lax: The Confirm failure and its lessons
[16]

4. Anatomy of the Boston Big Dig project

2.6. EVALUATION AND DISCUSSION 25

5. Requirements engineering challenges in multi-site software develop-
ment organizations[4]

Most of the above case studies can be either purchased through Harvard
Business School or can be purchased as a part of the book - Software Runaways:
Lessons Learned From Massive Software Project Failures [5].

2.6 Evaluation and Discussion

The classroom processes we have outlined here did lead to junior college
students delivering substantial projects at the end of their second or third (of
three) terms in the school year. Indeed, the majority of these projects were
successful, over three years of experience in using these processes in the re-
quirements course. Failures attributable to incorrect requirements were quite
low [3 out of 36]; we believe this was because of the quality work the students
did in eliciting and managing the requirements in the course described. They
showed their client prototypes early and often, so that misunderstandings
about requirements were known early. They did a professional job of trying
out their human interface designs on real users in the class, which improved
their projects’ odds of success. We also believe that they learned to follow
good practices for maintaining a relationship with their client, so that they
were able to relate realistically with them regarding such things as introduc-
tion of changes to requirements after they had begun building the system.

This requirements course was invented largely because the school also
has a software engineering major. However, since its inception in 2003, the
course always has been a required part of the computer science curriculum,
as well. Requirements engineering is not easy to teach to undergraduate ma-
jors for a variety of reasons which have been noted by others. As Lethbridge,
et al. [11] described teaching soft topics to undergrad CS students, “Anyone
who has tried to teach topics such as ethics, quality, process, configuration
management, maintenance and requirements will recognize the glassy-eyed
appearance in the eyes of some (or most) students. These are critical topics
for industrial practice, yet it is a particular challenge to motivate students to
feel passionate in these areas, and hence learn what they need to know”.

We believe that, if students see clearly the end result of all the work they
put into a project, including using their soft skills like requirements engi-
neering, they do appreciate the value of learning these skills. In our junior
sequence, they all carry their requirements projects forward into design and
development, sufficiently that they can see the importance of the time spent
learning to do requirements. That is, we believe the methodology described

26 CHAPTER 2. TEACHING

inherently helps to overcome the problem of students not valuing such mate-
rial. Further, the use of case studies and in-class discussions on the role of re-
quirements in the software life cycle and the problems caused due to various
failures directly attributed to requirements helped emphasize the vital nature
of the material and provided the necessary motivation for the students.

We conducted end of the term anonymous evaluations to gauge student
feedback about the course. The students were pleased with the outcomes and
felt that they gained a lot from the class. They liked the exposure provided
to real world practices through the project and conveyed that their level of
learning was higher in this class when compared to other courses. Students
felt that the the three-tier model of reinforced learning was instrumental in
their ability to understand and apply the concepts covered in the classroom.
Over the last three years, 104 students completed the surveys and the course
averaged the following:

• Quality of learning 4.12/5

• Use of supporting material to reinforce concepts 4.5/5

• Quality of course 4.01/5

Response from the students and alumni on free-from questions is filled
with positive feedback about the quality of learning, material and the course
in general. More details are not included due to space constraints, but we will
be happy to share the results. We include the following comment to convey
the expressed sentiments.

“Course homework and activities enforced the concepts we needed to learn. The
project really is the best part of this course. It is really cool to work with an actual
client, and it feels like we are doing something useful. Unlike other courses, there is
some motivation, besides grades, to actually do well on the project. The structure of
the course was excellent”

2.7 Conclusion

To be a science, computer science should be based on a firm foundation; in
most cases this is taken to include a clear expression of the problem to be
solved, such that it leads to a precise resolution. However, most computer
science students enter careers in software development, in areas where, usu-
ally, clarity of requirements is fuzzy and changing. As we said, this impreci-
sion is known to be a major culprit in the failure of a high percentage of the

2.7. CONCLUSION 27

projects they will embark on. Understanding how to interpret these require-
ments well is analytical work and lies very close to selecting the proper algo-
rithm and to the art of coding, usually felt to be the core parts of the computer
science curriculum. By knowing, as well, the art which goes into require-
ments elicitation and management, students gain a deeper understanding of
the meaning of those requirements. We believe that, even if an undergradu-
ate student’s intent is not to become an expert in requirements engineering,
their learning of how this expression of the problem comes to be, with real
customers, and the vagaries of that work, greatly improve their ability to fit
into real software organizations upon graduation.

We also believe that the staged learning of the skills in requirements en-
gineering, which we have outlined here, is a good teaching method for the
students to transition into this world they will work in, where problem def-
inition is much less predictable or containable than in the traditional class-
room.

Bibliography

[1] Standish group chaos: A recipe for success. Standish Group International,
1999.

[2] R. Bruhn and J. Camp. Capstone course creates useful business products
and corporate-ready students. ACM SIGCSE Bulletin, 2004.

[3] A. Cooper. The inmates are running the asylum. SAMS publishing, 2004.

[4] D. Damian and D. Zowghi. Requirements Engineering challenges in
multi-site software development organizations. Requirements engineer-
ing, 8(3):149–160, 2003.

[5] R. Glass. Software runaways. Prentice Hall, 1998.

[6] R. L. Glass. How not to prepare for a consulting assignment, and other
ugly consultancy truths. Commun. ACM, 41(12):11–13, 1998.

[7] R. L. Glass. Frequently forgotten fundamental facts about software en-
gineering. IEEE Softw., 18(3):112–111, 2001.

[8] H. Koppelman and B. van Dijk. Creating a realistic context for team
projects in HCI. ACM SIGCSE Bulletin, 2006.

[9] G. Kotonya and I. Sommerville. Requirements engineering. Wiley Chich-
ester, 1998.

[10] D. Leffingwell and D. Widrig. Managing Software Requirements: a use case
approach. Pearson Education, 2003.

[11] T. Lethbridge, J. Diaz-Herrera, J. Richard Jr, and J. LeBlanc. Improv-
ing software practice through education: Challenges and future trends.
2007.

[12] L. Macaulay and J. Mylopoulos. Requirements Engineering: an educa-
tional dilemma. Automated Software Engineering, 2(4):343–351, 1995.

29

30 BIBLIOGRAPHY

[13] R. Montealegre, H. Nelson, C. Knoop, and L. Applegate. BAE auto-
mated systems (A): Denver International Airport baggage-handling sys-
tem. Harvard Business School Teaching Case, page 311, 1996.

[14] T. Moynihan. How experienced project managers assess risk. IEEE
Softw., 14(3):35–41, 1997.

[15] J. Myers Jr. Software engineering throughout a traditional computer
science curriculum. In Proceedings of the fourteenth annual consortium on
Small Colleges Southeastern conference, 2000.

[16] E. Oz. When professional standards are lax: the CONFIRM failure and
its lessons. Communications of the ACM, 37(10):29–43, 1994.

[17] J. Preece, Y. Rogers, and H. Sharp. Interaction design: beyond human-
computer interaction. 2006.

[18] R. Pressman. Software Engineering - A Practitioners Approach. McGraww
Hill, 2009.

[19] K. D. Schenk, N. P. Vitalari, and K. S. Davis. Differences between novice
and expert systems analysts: what do we know and what do we do? J.
Manage. Inf. Syst., 15(1):9–50, 1998.

[20] B. Shneiderman and C. Plaisant. Designing the user interface - Strategies
for Effective Human Computer Interaction. Addison-Wesley Reading, MA,
2009.

[21] I. Sommerville. Software Engineering. Addison Wesley, 2010.

[22] J. Verner, K. Cox, S. Bleistein, and N. Cerpa. Requirements engineering
and software project success: An industrial survey in australia and the
u.s., 2004.

[23] E. Walker and O. Slotterbeck. Incorporating realistic teamwork into a
small college software engineering curriculum. Journal of Computing Sci-
ences in Colleges, 2002.

Course Syllabus

31

Information Packet

CSSE 371
Software Requirements and Specification

Fall 2010

Computer Science and Software Engineering
Rose-Hulman Institute of Technology

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 33

CSSE 371 – Software Requirements and Specification - Fall 2010

 2

Computer Science and Software Engineering 371
Software Requirements and Specification

Fall 2010

Instructor: Sriram Mohan

Office: Moench Hall, Room F226

Phones: 877-8819 (Office) ; 812-219-9658 (Cell)

Email: mohan@rose-hulman.edu

Office Hours: I usually live in Moench Hall, Just drop by when you need to see me.

Project Managers:

Eli Baca
Tim Ekl
Mark Jenne
Eric Stokes

371 Course Meeting Times:

(Section 1) 8th period MTRF – Olin 169
 (Section 2) 9th period MTRF – Olin 169

371 Course Prerequisite:

 CSSE 230 (Fundamentals of Software Development III) or equivalent
 RH 330 or equivalent
 Junior standing

371 Course Description: Basic concepts and principles of software requirements engineering, its
tools and techniques, and methods for modeling software systems. Topics include requirements
elicitation, prototyping, functional and non-functional requirements, object-oriented techniques, and
requirements tracking.

371 Course Outcomes: Students who successfully complete the course should be able to:

1. Explain the role of requirements engineering and its process.
2. Formulate a problem statement using standard analysis techniques.
3. Determine stakeholder requirements using multiple standard techniques.
4. Produce a specification with functional and non-functional requirements based on the elicited

requirements.
5. Decide scope and priorities by negotiating with the client and other stakeholders.
6. Manage requirements.
7. Apply standard quality assurance techniques to ensure that requirements are: verifiable, traceable,

measurable, testable, accurate, unambiguous, consistent, and complete.
8. Produce test cases, plans, and procedures that can be used to verify that they have defined,

designed and implemented a system that meets the needs of the intended users.
9. Design and Prototype user interfaces to validate requirements.

34 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 3

10. Prepare and conduct usability tests to evaluate the usability, utility and efficiency of the
developed user interface.

371 Course Texts (Both Required):

• Managing Software Requirements: A Use Case Approach, Second Edition, by Dean
Leffingwell and Don Widrig

• Interaction Design: Beyond Human-Computer Interaction, Second Edition, by Jennifer
Preece, Yvonne Rogers and Helen Sharp

Course Evaluation and Feedback:

Please feel free to provide me feedback about the course at any time. Also, an anonymous feedback
box under the ANGEL account for this course will be available for feedback throughout the course;
I typically check it once a day and will respond to feedback during the next class session. There will
also be two anonymous plus-delta evaluations of the course.
 I recommend that you keep a “course evaluation log” somewhere to make notes that you can
use for the course evaluation at both midterm and the end of the course.

Course Average Determination:

50% Software Team Project Work (details below)

20% Exams
20% Homeworks & Case Studies
10%

Class Participation (including attendance and
quizzes)

Team Project Work Breakdown:

10% Manager’s Evaluation
5% Clients’ Evaluation
10% Peer Evaluations
10% Weekly Summary Reports
60% Other Project Artifacts
 5% Project Presentations

Note: Our assessment of your contribution to your team, and your team’s peer evaluation of that
contribution, becomes a fudge factor in final grades. This can be a significant adjustment in the
positive or negative direction. Thus it is possible for a student to get a low grade even if their team
does an exceptional job and vice-versa.

Course Grade Division:

90-100 A
85-89 B+
80-84 B
75-79 C+
70-74 C

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 35

CSSE 371 – Software Requirements and Specification - Fall 2010

 4

65-69 D+
60-64 D
0-59 F

Exam Policy:

Exams will be in-class, closed book, and closed notes except for one 8.5 by 11 sheet of paper which
you can put notes on using both sides of the page. No exams will be “dropped”. If you have a
conflict with a scheduled exam, you should notify me immediately. Giving a makeup exam for an
unexcused absence is at the discretion of the instructor. Any requests for re-grading must be made
in writing by the beginning of the next class period after the exams are returned.

Homework Grade:

There will be approximately one homework assignment each week. The homework’s include a
variety of tasks that will help each student prepare for the various milestones in the project. The
homework will be of great help as you work on the project and can significantly affect the final
grade. Unless otherwise stated, all homework assignments are to be done independently. All
homework assignments are to be submitted to the Angel drop box by 11:55 PM on the day it's due.

Case Studies:

We will be doing case studies on most Fridays. You should prepare (and submit) a write-up of your
opinion (and any questions as stated) of the case study. The pre-discussion write-up should be no
more than 1/2 page (approximately 1 paragraph). It will be due before class (2:30 PM Friday).

After the in-class discussion, you are to write how your opinion on the case study changed and/or
why it stayed the same. The case study follow-up should, again, be no more than a 1/2 page
(approximately 1 paragraph). It should be contained within the same document as your pre-
discussion write-up. It will be due to Angel Monday at 8:00 AM.

Ethics and Professional Practice:

You are expected to act honestly and professionally in this course at all times, in a manner consistent
with the schools honor code.

Class Participation Policy:

There are 40 meeting times during the term. You can potentially receive 10 points towards the class
participation portion of your grade for each of those classes in the following fashion:

• If there is a quiz during class, you can earn up to 10 points on it.
• If there is no quiz during class and you attend and make an effort to participate (since with

a small class there will be lots of discussion), you will earn 10 points.
• If the class for some reason does not meet, you automatically receive 10 points.

Attendance Policy:

36 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 5

Up to 2 unexcused absences allowed. In accordance with the Rose-Hulman attendance policy,
additional unexcused absences may result in you receiving a failing grade for the course. You are
responsible for making up any missed work.

Laptop Policy:

You will generally need to use your laptops during at least a portion of every class period. Please be
sure to bring your laptop, a power brick, and a network cable to class.

During class discussion, please do not use your laptops. Laptop use during discussions is distracting
to your classmates and also keeps you from focusing on the material. If you typically use your laptop
for note taking, please talk to your instructor so he can make an exception.

Collaboration:

You are encouraged to discuss the homework and other parts of the class with other students. Such
discussions about ideas are not cheating, whereas the exchange of code or written answers is
cheating. However, in such discussions of ideas, you should distinguish between helping and hurting
yourself and the other student. In brief, you can help the other student by teaching them, and you
can hurt them by giving them answers that they should have worked out for themselves. The same
applies to tutoring and getting help from the instructor.

“Hurtful help” most commonly occurs in giving away a key idea needed to solve a problem. For
example, suppose you have studied a programming problem for an hour or so and finally found that
the key to the solution is to use a helping procedure you call “critical”. Your friend, after working on
the problem for 15 minutes, says “I just can't see how to do this” and you say, “try using a helping
procedure called ‘critical’.

Although it takes more time, your friend will learn more if you say something like: “How are you
approaching the problem, what's your plan?” (Knowing that if your friend is not planning, no
helping procedure will be found). If your friend hasn't planned, you should let them do it; if they
have trouble planning, tell them to think about problems discussed in class that were similar, etc. If,
after planning, your friend still hasn't found helping procedure 'critical', you should say something
more direct like, “what helping procedures do you have?” or “how do these helping procedures help
you get closer to the solution?” or “can you solve part of the problem?” The idea is to guide the
other person's thinking process.

Perhaps a more common way to fall into the hurtful exchange of giving away the key idea is when
you're talking over a problem that no one knows the answer to yet. Once one of you comes up with
the key idea, it is tempting to blurt it out, impressing the others with your brilliance. If this happens,
you should write “developed in cooperation with ...” on your solution. (Note that this disclaimer
cannot be used to get away with cheating, but we're not discussing exchanging written code or
answers.) It would be better for the one who comes up with the key idea say “I have it, but now I
can't tell you what it is” and then try to guide the others to the solution as described above.

If you use reference materials (other than the course texts) to solve a problem, please cite the
referenced material. Similarly, if you discuss a solution with another student, give credit where credit
is due by making a note such as “the following idea was developed jointly with Alyssia P. Hacker,”
or “the following idea is due to Ben Bittwiddle.” You cannot be charged with plagiarism if you cite

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 37

CSSE 371 – Software Requirements and Specification - Fall 2010

 6

in this way. (However, don't expect to excuse cheating with such a citation. That is, you cannot
exchange code even if you say it was developed in cooperation with someone else. Cooperation
refers to the exchange of ideas, not code or written answers.)

General Writing Issues:

Written communication is important in this course, as it is in the profession in general. Remember
that a software document has several unique and important characteristics:

1. Technical documents are often the result of group authorship, thus it requires planning and
final tweaking.

2. Specificity and organization are more important than flow, hence technical documentation is
often ordered around lists and tables rather than paragraphs.

3. Documentation is often the reader’s only source of information on the particular subject or
product, hence it must be thorough and complete.

4. Documentation is often used to answer a specific question; hence it should facilitate finding
a specific piece of information (navigation).

5. Documentation must bridge from general specifications to particulars of implementation
and operation, hence it must make abstract concepts concrete and make concrete facts fit
generalized concepts.

6. Documentation can be presented in many forms: online via HTML, MS help files, just plain
text, and on paper as reference manuals, tutorial, quick reference guides, etc. It is important
to choose the correct medium and even more important to write to fit the medium.

You can always drop by my office or consult with your project manager, if you have any
questions regarding your document. We would be happy to look at it and suggest some
changes. You should also be aware of the service provided by the Learning Center.

Late Submissions:

Late quizzes and case studies will not be accepted. Homework assignments, and Project milestone
deliverables will also not be accepted late, with the following exception:

You have four “late day” credits. You may use one of them on any Homework assignment, or
Project deliverable, which will allow you to submit that assignment up to 24 hours after the due
time. Homework’s or project assignments, which are more than 24 hours late, will receive a
deduction of at least 10% per late day (or not be accepted at all), depending on the circumstances
and the degree of lateness.

You may earn a maximum of one additional “late day” by submitting an assignment or a project
deliverable 24 hours before the due date. Please send me an email alerting me to the same to obtain
the “late day” credit.

If you submit something late for which late day credits are allowed, I will assume that you want to
use one of your credits unless you tell me otherwise.

Project Grade:

38 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 7

The various artifacts you will produce, as a part of the project will be organized into milestones.
There is no set scale or weighting for individual milestones. They are there to give you concrete
immediate objectives, valuable feedback and metrics for evaluating your progress. The success of a
team depends on the contributions of each and every team member; a member who does not
participate in and contribute to his or her team project can be removed from the team on the
recommendation of the project manager.

Project Schedule and Deliverables:

 During the fall quarter, the teams will interact with their respective clients to elicit requirements,
define the system, and perform traditional project management activities. In addition, each team will
also produce a test plan to verify that the developed system meets the user needs. The team will also
produce a usable and effective user interface and verify the same via usability tests.

Deliverable Contents Due Date
Milestone 1 Individual Engineering Journal

• Current System Analysis
• Client Stakeholder Analysis
• Feature Listing
• Problem Statement

September 24

Milestone 2 Individual Engineering Journal

• Use Cases
• Data Flow Diagram

October 8

Milestone 3 Individual Engineering Journal

• Supplementary

Specification
• Initial Design/Paper

Prototype

October 19

Milestone 4 Individual Engineering Journal

• Change Control Plan
• Coding Standards
• Test Cases

October 29

Milestone 5 • Initial Interface Design
• Usability Report
• Final Interface Design

November 9

Final Deliverable Individual Engineering Journal

• Final Updated Versions of

all milestones transitioned
to new team (includes

November 12

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 39

CSSE 371 – Software Requirements and Specification - Fall 2010

 8

signoff)
• Client Comments
• Lessons Learnt

Client Presentation November 11,12

Post Partum Presentation Experiences ... TBA

Deliverables in italics are due a week before to the project manager. Milestones 3 and 5 are due
Oct 10th and Nov 5th to the project manager while the presentations are due two days before to the
project manager.

During the winter quarter, the teams as a part of CSSE 374 will develop a detailed design

document for the system. Using the detailed design document as a guide, the team will complete
implementation of the system. The team will perform acceptance, unit and integration testing (based
on the test plan defined in the fall quarter) to verify the system. Usability tests will also be performed
to check for ease of use and other factors that determine overall usability of the user interaction.

Individual Engineering Journal:

A. What’s an engineering journal?

Engineers and designers use these to write down ideas and to document what they did. They always
have dated entries, because they sometimes are used as “proof” of who thought of an idea first, like
in patent applications.

At NCR and at Bell Labs, these were hardbound books, and we always wrote project and meeting
notes in these, as well as our own ideas about new stuff. The big joke was that, at a meeting, the
engineers would all pull out an engineering journal, and the managers would pull out a day planner,
and this was how you knew who was who! Anyway, in design meetings, we documented who said
what and how decisions were made, which was very important to have as a reference.

Now that we’re in the post-modern age, you probably want to try doing such a journal electronically
(via twitter, a project blog, or as part of project management system such as Trac).

We’ve done these for a long time in other SE classes, and I’ll show a couple examples of contents
below.

B. How will we use these in class?

For 371, what I’d like you to do is the following:

1. Start your own personal journal. (I.e., One per person.)
2. Use it to record activities related to your team project.
3. Keep it up to date soon after team activities, if not “during.”
4. Turn it in during every milestone, so I can look at it and/or grade it as a part of your work.

Turn in the whole thing every time.
5. At the end of the course, use it to consider what was most important to you, etc.

What I will look for in the journal:

40 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 9

1. It describes what you contributed personally to your teams’ project that week.
2. It discusses team interactions, from your perspective. E.g., what happened in team

meetings?
3. It describes new ideas you had, as these came to mind.
4. It also describes new problems you thought of, related to your team’s project.
5. It says from your perspective how the team made decisions and dealt with action items.

E.g., How did the team decide the look and feel for the user screens?
6. It reflects on earlier decisions – later entries should look back on what you did before.
7. It talks about plans for completing the project, like how risks are being handled, and what

you plan to do about it.

C. Examples of journal entries from earlier SE classes:

Today we decided to use a map-based mental model for the interface. This model will focus the
interview questions that are asked before the software is shown. It also has an impact in how the
software will be built.

Determined that a user must be notified of an incoming request, so created a method DisplayNotification
which takes a type and a user (both Strings). The arguments tell what type of message to display and the user
the notification is coming from. By using the notification, a user may accept or reject a file transfer.

As a consequence, the DisplayNotification has been made to accommodate for other types of dialog
messages for any future messages to be displayed to the user. Also, I will create another
DisplayNotification, which only takes a type to accommodate for notifications, which do not come
from another user. The DisplayNotification method allows for the creation of multiple types of
dialog message to display to the user.

We interviewed several users for the system. We used our people we knew who were students at Rose. We used a
variety of majors so we got a variety of technical skill levels. We picked BMEs, MEs, Math, Econ, etc. The
interviews went smoothly. After asking the pre-test questions, we gave a quick overview of the application
concepts and we let them loose. Then, we asked the post-interview questions. For three of the participants, I
wrote down the participants' answers and typed them up afterwards. Jeremy took notes for the other three.

Wednesday, April 9, 2008
-Use cases:

-Considered administrative use cases, but could not think of any.
-The system does not need to be installed, it does not have any excess files, and all in game items are user-level.
 |The only thing administrative would be distribution of the files, which seems excessive to put into a use case.
-Remaining documents were updated as seemed appropriate. Most of the documents were kept up to date
locally.
 |Final modifications were made to get them up to par with this project.

- Ran into timing problems as an overlooked project overlapped with time slotted for this one.

Dear Journal,
We discussed today that it was ok to do page redirects within the View, as doing so does not interact
with the Model in any way. Also, we originally had the Model sending redirect requests, but
determined that these requests should be sent to the Controller first and the Controller should be
the one doing the redirecting.

Prior to conducting the interviews, it was not decided if the kitty should be thrown to the left side or the right side.
However, as the interviews revealed, all users seem to unconsciously prefer throwing the kitty to the right side.

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 41

CSSE 371 – Software Requirements and Specification - Fall 2010

 10

It should be noted that all interviewed users are right handed, and have also played similar implementations of this game.
It could be that right-handed individuals simply expect objects to travel across the screen from left to right. Or it could
also be that the users are all unfairly biased from having played similar games before.

Project Planning:

In order to complete the project successfully, it is necessary for the team to work on several tasks at
the same time. Each task has a significant lead-time – for contacting a client, reviewing a document,
or simply careful deliberation. Do not expect to complete a milestone if you haven’t started working
on it at least a couple of weeks before it is due. All of this requires that steps be planned and that the
plan be monitored. The project schedule should help you get started on a plan. While preparing the
project plan (you will be doing this as a part of CSSE 372), you should outline a schedule that will
help you meet the various milestones. Parallel schedules must be developed where necessary.

Project Teams:

You will be assigned to a Project Team by the 8th of September. A list of project choices will be
available by the 3rd of September. Based on your choices (use the survey available on Angel), you will
be assigned into teams by the Instructor and the Project Managers. Team assignment will be done
with an eye towards providing each team with the necessary balance of skill and capabilities. From
time to time, the management might reassign an individual from one team to another, based on
changing estimates of man power needs and team abilities. Very rarely, a team member might be
“fired” using the mechanism described below.

Project Manger and their Responsibilities:

Each team will have a project manager. The project managers will be seniors who have taken the
CSSE 371/372/374/375 combination earlier. They will provide valuable help to the teams.

 Although a manager will often give a team technical guidance, their one specific responsibility is
assisting the team with the process. To this end, each team must hold a “project manager meeting”
each week, where process related matters are reviewed. Please note that the manager is not the one
in charge of these meetings – in fact, the team is still responsible for the conduct of the meeting.
The most important process matter is project planning, as reflected in the Weekly Assessment
Report section below; Of course technical matters are often covered at the meeting; it is a good
occasion to hold a “walk-through” of some topic. Furthermore, the team often will need to meet
more than once a week – perhaps with the manager, with the clients, with the instructor or with
other stakeholders.

 The manager has a responsibility similar to a first line manager in a professional situation. Of
course, the manager cannot literally fire and hire students, or suggest raises or salary reductions.
However, the manager does have at least two ways to encourage performance by the team members.

 First, the manager will periodically evaluate each member of the team. This evaluation will be
given strong consideration in determining the individual grade for the project. Since the project is a
very significant portion of the final grade, this should provide incentive for all team members to
perform.

 A second, more drastic mechanism is available to the manager if a student is unable or unwilling
to work appropriately as a team member. The manager can recommend that the instructor “fire” the

42 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 11

student. The instructor will carefully evaluate the student’s performance in the context of the team
and, if warranted remove the student from his/her team, in effect firing the student from the
project. Being fired from a project is sufficient grounds for failing the course unless appropriate
remedial action, as agreed with the instructor, is taken. For instance, a “fired” student can be given
an appropriate individual project assignment by the instructor. The grade for the replacement
project will be reduced by one letter grade, so that the maximum grade is a B. A “fired” student can
try to get “hired” by another project manager, but the student will have to make a very good case to
succeed.

Client Feedback

I will be soliciting feedback from your client at midterm and at the end of the term. You will not
get above a D in this class if you do not deliver a satisfactory product to your client!

Client Meetings

A key to you gaining satisfactory feedback from your client is a regularly scheduled meeting. We
expect to see an agenda (submitted at least 24 hours in advance) and meeting minutes.

Peer Feedback

Also at midterm and the end of the term, we will be soliciting feedback from your other team
members. We expect feedback given here to be constructive.

Weekly Assessment Reports

Every Friday at noon, you should submit (as a team) a weekly status report. Status reports are to
follow the template (this will be the only template you'll be given for this class) shown below, should
be signed, and delivered in hardcopy to your instructor. These will be graded based on adherence to
the template, completeness, accuracy, and content. An updated copy of the Weekly Status Report
must be sent to the project manager 12 hours in advance of the “project manager meeting”.

The purpose of the report is to record the following in a consistent manner and place: what tasks
must be done, when they must be begun and finished, who is responsible for accomplishing them,
and where they stand with respect to their completion.

Status Report for Team ________________

Week : <Use Rose Week>

Last week's status: <Green, Yellow, Red>

Current project state: <Green, Yellow, Red>

Tasks completed last week: <bulleted list of high-level summary of tasks and who
performed them>

Tasks to be completed next week: <bulleted list of high-level summary of tasks and who's
to perform them>

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 43

CSSE 371 – Software Requirements and Specification - Fall 2010

 12

Key issues/problems: <list of key issues/problems of concern, mitigation strategy, and
revisit date>

Weekly metrics:

Team
Member
Name

Actuals from
Previous
Week

Variance for Last
Week

Forecast Time
for Upcoming
Week

Totals to
Date

Signature

One for each
team
member

In Minutes (Negative in
Parentheses) In
Minutes

In Minutes In
Minutes

Sign here

Team Roles:

Roles are associated with ongoing or regularly recurring responsibilities. In some sense a role is just a
continuing task, but roles are typically associated with process matters while tasks are more likely to
work towards products. Of course, there are many more roles than there are team members; this
necessitates that each team member may be assigned several roles. For example, the various liaison
roles may be combined and assigned to one person. Sometimes a role is done collectively by the
entire team and thus assigned to the team; only a few roles such as task assignment are suitable for
the collective responsibility.

The project roles are:

• Secretary: Takes minutes during meetings and communicates them to all concerned parties.
• Manager/Instructor Liaison
• Client Liaison: It is important that all team members meet with the client for information

gathering, presentations and related activities. However, unless there is one person who
schedules meetings, makes commitments etc., the client (and the team) is likely to get
confused.

• Task Assigner/Monitor: Schedules, assigns and monitors tasks based on deliverables and
activities identified by the team.

• Convener: Calls meetings, organizes intra-team communication.
• Librarian: Maintains a repository of documents and programs; monitors configuration.

Particularly relevant during implementation.
• Guru: Toolkit/Language/Platform Specialist. The guru should teach the tool(s) to other

team members. Occasionally this role is split to address multiple tools.

There are many ways to organize a small team, but the most common is to have a single leader
who makes all the key decisions and divides up the work for the other team members. A more
democratic organization in which the team members share the work can also be successful, but the
team must be sure that all the key responsibilities are actually met. You are free to choose your own
organization, but you are advised to consult with your project manager.

In any case, you must designate one person each as an Instructor/Manager Liaison, a Client
Liaison and a Secretary (these are not necessarily different people and the identity of the individuals
in these positions may change over time). The contacts serve as the primary coordination channel
between the team and the Instructor or the Manager respectively.

44 COURSE SYLLABUS

CSSE 371 – Software Requirements and Specification - Fall 2010

 13

Document Contents:

All milestone documents produced for this class must include the following sections

1. Title page: This page must contain the team’s name and the document title, and must
have the signatures of all the team members. A team member’s signature indicates that
they have read and approve the contents of the entire document and not just the portion
they were assigned.

2. Table of Contents: Every section and sub-section in the document along with the page
numbers should be mentioned here. If you are using Microsoft Word, use the Table of
Contents wizard. If you are using Latex, this is automatically generated for you.

3. Executive Summary: This will be the first section in the document and must briefly summarize
the contents of this document.

4. Introduction: This will be the second section of the document and will state the purpose of
the document and its relation to the rest of the milestones and the software development
life cycle.

5. Milestone Specific Content: This will be the main content portion of the document. Follow the
template given in the book for the various milestones. The book does not have templates
for a Usability Report. A Sample report will be made available on Angel.

6. References: Any paper, website or any other external resource you might use to write your
milestone document has to be duly referenced. If you are using Microsoft Word, we
recommend the use of EndNote. If you are using Latex, you can achieve similar results by
using bibtex.

7. Appendix: Any extra information that improves the overall readability of the document.
8. Index: An index of popular words and the pages they are mentioned.
9. Glossary: A list of words (that might be new to the reader) along with their definitions.

Deliverable Submission:

You will submit your milestone documents using a large three-ring project binder. You will be
required to submit successive milestones in the same binder, so that each is in the context of the
preceding and the entire history of project milestones is collected together. To reduce bulk and save
trees, you are encouraged to print all documents duplex.

We expect the report to be free of spelling and grammatical errors. All documents to be turned
in should be written in a professional manner. Each team member has to take ownership and
read and approve the complete document (and not just the parts for which they were
responsible) for submission. As the instructor, I would be happy to review any portion of the
document at any time and suggest changes.

Client Presentation:

 The last few days of the class will be devoted to project presentations. Each team will have
approximately twenty minutes to describe the product that they intend to produce. There are several
reasons for giving presentations. First of all, they give you a chance to exercise your communication
skills. You will find that whatever kind of job you choose; you will have to present your ideas to
others at one time or another. Secondly, they help the class as a whole since everyone learns about a
large number of projects. Finally they provide a basis for comparing the teams for grading purposes.

CSSE 371 SYLLABUS - RHIT, DR.MOHAN 45

CSSE 371 – Software Requirements and Specification - Fall 2010

 14

 Your presentation should be based mostly on the Requirements that were elicited during client
interviews. It should explain (i) who the client is (ii) why the product is desirable and useful (iii) what
requirements the client has iv) initial interface design and v) usability report and the final interface
design. You should plan to do a professional job. It will help if you imagine the presentation as a
pitch for a client company to invest resources for your project. Remember that you only have a
limited time – you will be cut off if you run long and this will hurt your score. It is a good idea to
practice your presentation several times before you get up in front of the class.

 In targeting the audience of the presentation, imagine that you are speaking to managers who
are savvy but not necessarily familiar with the intimate details of technology. You are encouraged to
invite your clients to the presentation or to repeat it for them at their site. The instructor might
invite other faculty members in the department and at Rose-Hulman Ventures to sit in on the
presentation.

 For pedagogical reasons, every member of the team is required to participate in the
presentation. It is not necessary that every member talks for exactly the same length of time, but
everyone should have something meaningful to say, and everyone should have a designated part of
the product that they will be responsible for answering questions about. No written report is
necessary for the project presentation.

Post partum Presentation1:

This presentation gives everyone a chance to benefit from what you have learned during this course
and you a chance to learn from others too. We learn most effectively by facing and overcoming
problems. If, upon attempting something for the first time, everything goes well, we are likely to
assume that the task is easy or that we are especially skilled. This may lead to a casual attitude which
could be costly later. On the other hand, if we have trouble, we are more likely to be aware of the
pitfalls and avoid them the next time. This enhances the affect by calling our attention to the
problems we faced. The intent of the post partum analysis is then NOT to find fault but rather to
avoid pitfalls in the future. It is an opportunity for your team to sit down and analyze its mistakes
and accomplishments.

 Your class presentation should describe your most significant unanticipated problems, both
avoidable and unavoidable. Explain how you overcame the problems and how costly it was in terms
of time. Suggest how to avoid such problems and assess the risk of the unavoidable problems. Your
written analysis should be similar to your oral presentation, but should be more detailed. The written
report should be turned in directly to the instructor.

 If you so desire, you can also use this presentation to talk about the changes you desire in the
class - things that did not go well and have to be changed the next time the course is taught, and
things that went well and you would like to see continue.

Syllabus developed by Sriram Mohan, Fall 2010-11, based on earlier work by Salman Azhar, Edward Robertson, Mark
Ardis, Donald Bagert, Steven Chenoweth, Victoria Wenger and Curt Clifton.

1 This presentation is often labeled “post mortem” (“after death” in Latin), reflecting the fact that the process has
been completed; however, “post partum” (“after birth”) reflects the fact the process has resulted in the delivery of
project specifications.

46 COURSE SYLLABUS

Homework Assignments

47

Computer Science and Software Engineering 371
Software Requirements and Specification

Fall 2010
Homework #1

Due: Tuesday September 14 at 11:55 PM
Purpose: To gain experience in creating a problem statement, identifying stakeholders

and constraints

In the remaining homework assignments, we will be working on an example scenario
that is intended to help you with the team project. Your Project Manager will be (role)
playing various stakeholders. Students at Rose-Hulman will act as account holders,
while your Project Manager represent the Bank. Please make sure that you talk to a
couple of students and interview your Project Manager, before you turn in the
assignments. Please turn in your homework (.pdf file) to the 371 Homework #1 Drop
Box in ANGEL. Please remember that all documents must be written in a professional
manner.

“Bank de Rose” was established in 1875 to assist employees of Rose Polytechnic to
manage their money and investments. It has now grown to be one of the most successful
banks in the Wabash Valley. “Bank de Rose” has ATM’s for convenient access at various
locations at the Rose-Hulman campus and in several locations in downtown Terre Haute.
They have recently released plans on redesigning and updating their ATM software to enable
a better user experience for their customers.

For Homework #1, you have to turn in

1) A problem statement for this software, using the format we discussed in class. Note
that a problem statement includes an elevator statement

2) A fish bone analysis of the main problems from
a.) The customers perspective
b.) The bank’s perspective.

3) Make a table of at least 10 different stakeholders for an Automatic Teller Machine.

Remember that people with different roles in an organization are considered different
stakeholders.

a.) For each stakeholder, write a sentence describing his or her concerns about
the ATM.

4) What are the possible constraints that can be imposed on the ATM software? Use the
template from Table 5-5(pg56) as an example.

CSSE 371- RHIT- HW 1, FALL 2010 49

Computer Science and Software Engineering 371
Software Requirements and Specification

Fall 2010
Homework #2

Due: Friday September 17 at 11:55 PM
Purpose: To gain experience in identifying features

In the remaining homework assignments, we will be working on an example scenario
that is intended to help you with the team project. Your Project Manager will be (role)
playing various stakeholders. Students at Rose-Hulman will act as account holders,
while your Project Manager represent the Bank. Please make sure that you talk to a
couple of students and interview your Project Manager, before you turn in the
assignments. Please turn in your homework (.pdf file) to the Homework #2 Drop Box in
ANGEL. Please remember that all documents must be written in a professional manner.

“Bank de Rose” was established in 1875 to assist employees of Rose Polytechnic to
manage their money and investments. It has now grown to be one of the most successful
banks in the Wabash Valley. “Bank de Rose” has ATM’s for convenient access at various
locations at the Rose-Hulman campus and in several locations in downtown Terre Haute.
They have recently released plans on redesigning and updating their ATM software to enable
a better user experience for their customers.

For Homework #2, you have to turn in

1) Make a table of the features you have identified for an Automatic Teller Machine.

a.) For each feature, describe it using the table format discussed in the lecture.
See Pg 100.

b. Correlate the specific client that is satisfied by each feature.

Please turn in your homework to the 371 Homework #2 Drop Box in ANGEL.

CSSE 371- RHIT- HW 2, FALL 2010 51

CSSE 371 Software Requirements and Specification
Fall 2010

Homework 3

Due: Thursday September 23 2010 (Hand it in during Class)

In the remaining homework assignments, we will be working on an example scenario
that is intended to help you with the team project. Your Project Manager will be (role)
playing various stakeholders. Students at Rose-Hulman will act as account holders,
while your Project Manager represent the Bank. Please make sure that you talk to a
couple of students and interview your Project Manager, before you turn in the
assignments. Please remember that all documents must be written in a professional
manner.

“Bank de Rose” was established in 1875 to assist employees of Rose Polytechnic to
manage their money and investments. It has now grown to be one of the most successful
banks in the Wabash Valley. “Bank de Rose” has ATM’s for convenient access at various
locations at the Rose-Hulman campus and in several locations in downtown Terre Haute.
They have recently released plans on redesigning and updating their ATM software to enable
a better user experience for their customers.

Part A

Purpose: Practice creating storyboards

1. Reusing storyboards: On the Web, find a suitable storyboard about an ATM
stakeholder. Using this image you find, which you also should turn in, tell your own story
about that stakeholder’s interactions with the system. If necessary, replace dialogue shown
with your own. For example, if we hadn’t already used it, you might’ve stolen this image
from

CSSE 371- RHIT- HW 3, FALL 2010 53

http://www.cartoonstudio.co.uk/Pages/AbbeyNatATM.html, and made up a story about the
second guy stealing the first guy’s secret number, which is not what this is really about.
And I probably could think of things for the character at right to say!

3. Making your own storyboards: Drawing them yourself, create a set of 3 “passive”
storyboards for the Bank de Rose project, which show a stakeholder performing some key
action, in a way which graphically brings home the essence of that action. (This art will not
be graded, per se, beyond its needing to be recognizable as telling the story. However, to
be fair to any artists, fab artwork will get a bonus!)

4. Documenting the story: After you draw them, describe the story they tell about your
stakeholders, using the 3 essential elements of a storyboard.

5. Stretch the story: As you did with the stolen artwork, use the storyboard in a different
way. This time, show it to someone else (your roommate, say), and ask them to describe
what it means without seeing what you wrote about it. Include a synopsis of what they said
in the work you turn in.

6. Hand in both sets of art work and their associated descriptions. We are assuming here
that you’ll physically hand in this homework, rather than having to scan it in for Angel.

Part B

Purpose: Practice creating DFD’s

1. Create a context DFD for the main functions offered by the ATM interface

2. For at least 2 functions (Withdraw and Deposit for instance) provide Level 0, 1 and Level
2 diagrams.

3. Use the naming conventions that we discussed in the lecture. Write a sentence or two to
describe each DFD.

54 HOMEWORK ASSIGNMENTS

Computer Science and Software Engineering 371

Software Requirements and Specification

Fall 2010 Homework #4

Due: Monday September 27 In Class (No Late Days)

Purpose: Practice Creating Use cases.

In the remaining homework assignments, we will be working on an example scenario
that is intended to help you with the team project. Your Project Manager will be (role)
playing various stakeholders. Students at Rose-Hulman will act as account holders,
while your Project Manager represent the Bank. Please make sure that you talk to a
couple of students and interview your Project Manager, before you turn in the
assignments. Please turn in your homework (.pdf file) to the Homework #4 Drop Box in
ANGEL. Please remember that all documents must be written in a professional manner.

“Bank de Rose” was established in 1875 to assist employees of Rose Polytechnic to
manage their money and investments. It has now grown to be one of the most successful
banks in the Wabash Valley. “Bank de Rose” has ATM’s for convenient access at various
locations at the Rose-Hulman campus and in several locations in downtown Terre Haute.
They have recently released plans on redesigning and updating their ATM software to enable
a better user experience for their customers.

The management at “Bank de Rose” has decided that the following features are critical for
the proposed redesign.

a) Secure Authentication
b) User must be able to Withdraw Money from their various accounts at the bank.
c) User must be able to transfer money between their various accounts at the bank.
d) User must be able to determine the account balance for their various accounts at the

bank.

For Homework 4 Please answer the following questions for any 3 of the above features.
Please remember that ease of use is an important concern for all 4 features.

1. Identify all the actors for the ATM.

2. Identify all the use cases for the ATM.

3. Describe each use case. That is, list the sequence of events describing the basic flow and
list the sequences of events for alternate flows. Please include a good description, pre and
post-condition for all use cases.

CSSE 371- RHIT- HW 4, FALL 2010 55

Computer Science and Software Engineering 371

Software Requirements and Specification

Fall 2010 Homework #5

Due: Friday October 1 in class

Purpose: Practice Creating Paper Prototypes.

In the remaining homework assignments, we will be working on an example scenario
that is intended to help you with the team project. Your Project Manager will be (role)
playing various stakeholders. Students at Rose-Hulman will act as account holders,
while your Project Manager represent the Bank. Please make sure that you talk to a
couple of students and interview your Project Manager, before you turn in the
assignments. Please remember that all documents must be written in a professional
manner.

“Bank de Rose” was established in 1875 to assist employees of Rose Polytechnic to
manage their money and investments. It has now grown to be one of the most successful
banks in the Wabash Valley. “Bank de Rose” has ATM’s for convenient access at various
locations at the Rose-Hulman campus and in several locations in downtown Terre Haute.
They have recently released plans on redesigning and updating their ATM software to enable
a better user experience for their customers.

The management at “Bank de Rose” has decided that the following features are critical for
the proposed redesign.

a) Secure Authentication
b) User must be able to Withdraw Money from their various accounts at the bank.
c) User must be able to transfer money between their various accounts at the bank.
d) User must be able to determine the account balance for their various accounts at the

bank.

Please remember that ease of use is an important concern for all 4 features.

1. Create paper prototypes for the various user screens for any 2 of the above features for
the ATM. Each major screen should have its own base sheet of paper. Window objects
(widgets) should be placed on the screen using post-it notes or a similar mechanism.

2. For at least 1 features provide an alternative design. That is, the alternatives are not
simply rearrangements of the same widgets.

3. Hand in the paper prototypes. Be sure to put your name on the back of each sheet of
paper and the back of each moveable widget.

CSSE 371- RHIT- HW 5, FALL 2010 57

CSSE 371 Software Requirements and Specification
Fall 2010

Homework 6

Due: Tuesday, October 5 2010 – In Class

Purpose: Practice specifying supplementary specifications.

Note: This is a team assignment. If your team does not have enough time to meet to work
on the assignment, you can work on it individually.

What to do:

1. You can use any of your teams’ 371 - Homework 5 submissions to complete this
assignment.

2. Specify usability, reliability and performance requirements for the Bank De Rose
Project.

3. Comb through the selected Homework 5 submission to see if the usability
requirements mandate a change in any of the prototype screens. For one such
screen, describe how the requirements affect the screen? Describe the changes that
you need to make and draw a rough sketch of the new screen. You must turn in the
old screen.

CSSE 371- RHIT- HW 6, FALL 2010 59

CSSE 371 Software Requirements and Specification
Fall 2010

Homework 7

Due: Tuesday, October 12 2010

Purpose: Practice writing test cases. Please bring a print out to class.

Note: This is a team assignment.

What to do:

1. You can use any of your teams’ 371 Assignment 4 submissions to complete this
assignment.

2. Sketch the various test cases for the Withdraw Money and Transfer Money Use cases
using the format described in the book (See Chapter 26 of The Requirements Text).

CSSE 371- RHIT- HW 7, FALL 2010 61

CSSE 371 Software Requirements and Specification
Fall 2009

Homework 8

Due: Tuesday, October 27 2009 (In Class)

Purpose: Practice specifying usability goals and user experience goals

What to do:

1. Assignment from Chapter 1(Page 37) of Interaction Design text.

CSSE 371- RHIT- HW 8, FALL 2010 63

CSSE 371 Software Requirements and Specification
Fall 2009

Homework 9

Due: Tuesday, November 3 2009 – In Class

Purpose: Practice designing, usability testing and re-design based on user feedback.

Note: This is a team assignment

What to do:

1. “The Butterfly Ballot: Anatomy of disaster” is an interesting account written by
Bruce Tognazzini, that you can find by going to AskTog.com and looking through the
2001 column. Alternatively go directly to:
http://www.asktog.com/columns/042ButterflyBallot.html

2. Read Tog’s account and look at the picture of the ballot card.

3. Make a similar ballot card for a class election and ask 10 of your friends to vote using
the card. After each person has voted ask whom he or she intended to vote for and
whether the card was confusing. Note down their comments. Turn in your ballot card
along with the comments.

4. Redesign the card and perform the same test with 10 different people. Turn in your
redesigned ballot along with the comments.

5. Report your findings.

CSSE 371- RHIT- HW 9, FALL 2010 65

Project Milestone Rubrics

67

CSSE 371

Milestone 1 Grade:________________________ Team:_________________________

Executive Summary: (5 Points)

Introduction: (5 Points)

Main Content (65 Points)

Client Background: (5 Points)

Current System: (8 Points)

Alternatives and Competition: (2 Points)

User Profile: (10 Points)

User Needs: (10 Points)

Product Perspective: (5 Points)

Feature Listing: (20 Points)

CSSE 371- RHIT - MILESTONE 1, FALL 2010 69

 Constraints: (5 Points)

Writing: (15 Points)

 Formatting:
 Grammar:
 Spelling:
 Presentation:

Index and Glossary: (5 Points)

References: (5 Points)

Milestone 1 Specific Content: Here is a rough sketch of what the main content for
Milestone 1 should resemble

a) Client Background – What the client does? It must describe what the client does, both in

a broad overall sense and in day-to-day affairs, and describe how the project will fit into
the day-to-day workings for the client. Use this section to provide a general overview;
specifics can be given in the next section.

b) Current System – A brief description of the current system(if any) and identify its
features

c) User/Stakeholder Description - Use this section to identify your users(other
stakeholders) and how they will use the system. Must contain the following subsections

1. User/Stakeholder Profiles (See page 439 of requirements text)
2. User Environment(See page 439 of requirements text)
3. Key Needs – List the key problems or needs as perceived by the user. For each

user need, answer the following questions
i. What is the need? (Use the problem statement template shown in Page

46 of requirements text)
ii. How is it solved now?
iii. What is a possible solution?

4. Alternatives and Competition (See page 440 of requirements text)
d) Product Overview – Use it to provide a high level overview of your proposed system. It

must contain the following subsections
1. Product perspective (See page 440 of requirements text)
2. Elevator Statement/pitch as discussed in class
3. Summary of Capabilities(See page 441 of requirements text)
4. Assumptions and Dependencies(See page 441 of requirements text)
5. Rough Estimate of the Cost

e) Features
1. Describe the attributes you have chosen and their meanings (See page 442 of

requirements text)
2. Provide a listing of features (See page 425 of requirements text)

f) Solution Constraints (See Page56 of requirements text)

70 PROJECT MILESTONE RUBRICS

CSSE 371
Milestone 2 Grade: ________________________ Team:_________________________

Executive Summary: (2 Points)

Introduction: (2 Points)

Content: (80 Points)

Project Background (10 Points)
(Need, Features, Client, current System…)

Use Case Identification (5 Points)

Use Case Layout (5 Points)

Use Case Description/Other Functional Requirements (30 Points)

Use Case Feature Mapping (10 Points)

Context Flow Diagrams (5 Points)

CSSE 371- RHIT- MILESTONE 2, FALL 2010 71

Level 0, 1, … Diagrams (15 Points)

Writing: (10 Points)

 Formatting:
 Grammar:
 Spelling:
 Presentation:

Index and Glossary: (2 Points)

References: (4 Points)

Milestone 2 Main Content: Here is a rough sketch of what the main content for Milestone
2 should look like

a) Include any relevant sections from Milestone 1 that might be relevant to understand
this document

b) Use Cases: For each use case that you identify, follow the template discussed in page
450 of requirements text. See page 427 for an example.

c) Table to Map the use cases to the various listed features of the system.
d) Data flow Diagrams: Do context, Level 0, Level 1(as many levels as needed) to

explain the flow of data for both the current and proposed systems.

72 PROJECT MILESTONE RUBRICS

CSSE 371
Milestone 3 Grade: ________________________ Team:_________________________

Executive Summary: (2 Points)

Introduction: (2 Points)

Content: (80 Points)

Project Background + Functionality Not in Use Cases (10 Points)

Usability Requirements (8 Points)

Performance Requirements (8 Points)

Reliability Requirements (8 Points)

Supportability Requirements (3 Points)

Hardware and Software Interfaces (3 Points)

Documentation, Installation, Legal and Licensing Requirements (5 Points)

CSSE 371- RHIT- MILESTONE 3, FALL 2010 73

Design Constraints (5 Points)

User Interfaces (30)

Writing: (10 Points)

 Formatting:
 Grammar:
 Spelling:
 Presentation:

Index and Glossary: (2 Points)

References: (4 Points)

74 PROJECT MILESTONE RUBRICS

CSSE 371
Milestone 4 Grade: ________________________ Team:_________________________

Executive Summary: (3 Points)

Introduction: (3 Points)

Project Background (10 Points)(Needs, Features etc… to add detail and context to the
document)

Coding Standards (8 Points)

Change Control (15 Points)

 How do you receive requests? What information do you expect?

 How do you manage change? Decision Making etc

 How do you handle changes to project artifacts? Source Control etc

Test cases: (45 Points)

Test Case Description (30 Points)

Completeness (10 Points)

Test case layout (5 Points)

CSSE 371- RHIT- MILESTONE 4, FALL 2010 75

Writing: (10 Points)

 Formatting:
 Grammar:
 Spelling:
 Presentation:

Index and Glossary: (2 Points)

References: (4 Points)

76 PROJECT MILESTONE RUBRICS

CSSE 371
Milestone 5 Grade: ________________________ Team:_________________________

Executive Summary: (3 Points)

Introduction: (2 Points)

Project Background (7 Points) (Needs, Features etc… to provide project
background)

Usability Report: (45)

Process (15 Points)

Analysis (10 Points)

Findings (15 Points)

Presentation (5 Points)

Interaction Architecture (5 Points)

Initial Interface Design (8 Points)

CSSE 371- RHIT- MILESTONE 5, FALL 2010 77

Revised Interface Design (15 Points)

Writing: (10 Points)

 Formatting:
 Grammar:
 Spelling:
 Presentation:

Index and Glossary: (2 Points)

References: (3 Points)

78 PROJECT MILESTONE RUBRICS

Evaluations Letters

I have enclosed letters of evaluation written by Dr.Huzefa Kagdi and Dr. Ken
Surendran.

79

Software Engineering Commons Dr. Huzefa Kagdi

kagdih@mst.edu

A Summary of a Peer-Observation Exercise
Prepared by Huzefa Kagdi

1. Context
Subject/Observed: Dr. Sriram Mohan, Rose-Hulman Institute of Technology, Terre Haute, IN
Observer: Dr. Huzefa Kagdi, Missouri University of Science and Technology, Rolla, MO
Class: CSSE 333-Fundamentals of Database Systems or Introduction to Databases
Date: December 11, 2009
Purpose: Peer Observation exercise for Software Engineering Commons

2. Items to Observe
There was no one specific item that was the focus of observation. Sriram’s preference was to have a fairly
open observation session on his classroom performance. When asked about items that he would like to
be observed, he responded “I would like a general observation focussing on my teaching abilities and
ability to get the material across to the class.”.

3. Observation Summary
Sriram was well prepared, organized, punctual, and delivered the lecture in a timely and interactive
manner. He appeared very confident on the subject/topic of discussion (not my major area of expertise)
and was very engaging with the students. The material was delivered in logical progression and at
steady pace. There was a clear indication that students were actively learning; they were responding to,
as well as asking, questions. He was respectful of the students and accommodating (e.g., he knew his
students’ names!). A combination of viewgraphs, white boards, and hands-on computer examples were
used in a non-obtrusive manner (e.g., clear fonts/slide background, good handwriting, and screen size).
After the conclusion of the class period, Siram and I had a good discussion on a couple of points that
could be considered for potential future improvement.

Overall, I feel that Sriram is a dedicated and effective instructor, and I rate him high on a number of key
teaching aspects (see below). I do not see that he needs to make any major shift from what he is doing.

4. In-Class Performance Rubric

4.1. Class Organization
Started class on time
Introduced lesson (overview or focusing activity)
Paced topics appropriately.
Sequenced topics logically.
Related lesson to previous or future lessons or assignments.
Summarized or reviewed major lesson points.
Ended class on time.

4.2. Delivery
Presented or explained content clearly.
Used good examples to clarify points.
Varied explanations to respond to student questions or needs for clarification.
Emphasized important points.
Used graphics or visual aids or other enhancements to support presentation.
Used appropriate voice volume and inflection
Presented information or led discussions with enthusiasm and interest.
Responded appropriately to student behaviors.

4.3. Student Interaction
Encouraged student questions.

EVALUATION LETTER, DR. KAGDI 81

Software Engineering Commons Dr. Huzefa Kagdi

kagdih@mst.edu

Asked questions to monitor student understanding.
Waited sufficient time for students to answer questions.
Provided opportunities for students to interact together to discover/discuss or practice content points.
Showed enthusiasm for the content.
Showed respect for student questions and answers.

4.4. Content
Presented content at an appropriate level for the students.
Presented material relevant to the purpose of the course.
Demonstrated command of the subject matter.

5. Observation Notes During Class
“
• Sriram and I arrived about five minutes before the class. There were about 2 students then. The lab

assignment and daily quiz were handed out.
• About 20 students (only 1 female).
• Used viewgraphs – Powerpoint slides.
• Started on time.
• Started with a summary from the previous class.
• Main topic – supquries – queries within queries - indirect information, and their related operations

(e.g., IN, Exists), inner/outer joins
• A few students showed up late.
• Use of whiteboard – a good thing
• Use of whiteboard and hands-on stuff seemed a bit repetitive.
• Students were asked questions, and a couple of students also asked questions
• Student had access to slides (on their own machines).
• Example/output/test driven approach – my suggestion for later discussion.
• Given time from the lecture period to do quiz questions.
• Order of select and modification queries? – my suggestion for later discussion.
• Spent 1 hour and 5 minutes on the lecture portion.
• Rest of the period was for lab (due on Monday).
• A TA and the instructor were around to help with the lab.
“

82 EVALUATIONS LETTERS

1

Software
Engineering

Peer Observation of: Dr Sriram Mohan, Rose-Hulman Institute of Technology

Class Observed: CSSE 376 – Software Quality Assurance on 03/18/2010 2:30 – 3:20
 (by Ken Surendran, Southeast Missouri State University)
Background:
Sriram is teaching this course for the second time. On that day, the topic was use of
Mocks in unit testing. This topic is an addition this time (perhaps as part of continuous
quality improvement). The course is meant for Juniors in Software Engineering. These
students had a course in Java earlier on – so they are familiar with the concept of
interfaces, which is needed for this topic.

Setting the stage:
The class started promptly at 2:30. The students, as they walked in, picked up a quiz that
had seven short pointed questions pertaining to the topic of discussion. The presentation
slides for the class were posted ahead of the class; so were also the code examples
discussed in class. Earlier, Sriram was keeping the students at ease as they were
assembling – chatting on topics of general nature. This demonstrated the rapport Sriram
had with his students. When the class started, he established the context in testing where
mocks are used by providing a one-cell class diagram on the white board and referred to
it during his discussions.

In depth Concepts:
Sriram first differentiated mocks from stubs and used simple examples to illustrate the
use of mocks in interaction testing. He typed in the necessary codes for the interfaces as
he was deliberating and showed how mocks are created manually. These examples were
simple, drawn from commonly known domains, and complete – in the sense the students
could see the test results.

Through these workings he showed how tedious it could be for creating mocks manually
and the psychological implications leading to skip such testing altogether. At this point he
introduced a range of tools available for dealing with mocks (frameworks handling
implementations) and showed the class how to use one of them.

During this process he constantly checked with the students to ensure they are in sync
with him! The students responded very positively and, at times, they made statements
that exhibited understanding of the concepts. They were also appreciative of the quality –
comprehensive nature - of the class sides. After explaining and illustrating a concept,
Sriram drew the students’ attention to the appropriate question they should be in a
position to answer at that juncture. The students were highly engaged – learning each
concept and applying it immediately by way of answering the questions in the quiz.

EVALUATION LETTER, DR. SURENDRAN 83

2

Final moments
Sriram reiterated that he intends to walkthrough the steps for using mocks in testing once
again at the follow-on lab session the next day. By logically planning his sessions – three
concept sessions followed by a lab session – the students get an opportunity to internalize
the learned concepts. As the students walked out of the class, they turned in the quiz to
Sriram. These quizzes are part of summative assessment for the course.

Style and analysis
Sriram seems to be using the problem-based learning approach in this course – which
generally works well in such courses. By using a quiz-driven presentation, he is able to
ensure the essential concepts are understood by the students. He has tailored his teaching
to suit the audience. The current generation of traditional students is known for their
multi-tasking. Sriram seems to have found a way of keeping these students engaged by
letting them multi-task in class. The difference however is that all these tasks – listening
to deliberations, following the slides, working through the example, answering the quiz
questions - are channeled toward learning the concepts in the topic.

Sriram has excellent voice projection, varies his tone –everyone was attentive at this
afternoon class, and uses the isle-space effectively to retain the attention of all students.
Sriram is an enthusiastic teacher and has his focus on students’ learning. I could sense his
concern for the students’ learning all the time. He used the class time very effectively –
efficient use of time – to achieve his teaching objectives. All in all, it was a pleasure to
observe Sriram’s dynamic performance in the classroom.

Suggestion
The only suggestion I could make is that Sriram could expand a bit more on the class
diagram he drew on the white board at the beginning. For the examples he used, he could
have drawn complete class diagrams (with 3-cells) showing the interfaces (with the
method names in them) and the classes that realize these methods. Even though it is not a
design course; showing a class diagram for the code that follows may serve as a better
abstraction – a picture that is easier to communicate and to remember the concept. There
is very little that I could suggest to Sriram regarding his class preparation or delivery
performance, since they are simply excellent. He just needs to maintain this momentum
and build on them.

84 EVALUATIONS LETTERS

