
CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 1 of 8

This Individual Project will have you coding to a UML design specification. Attached you will find both a

Requirements Specification and a Design Specification. Your responsibility is to implement all of the design, as

specified, while meeting all of the requirements, as specified. Note that all of the design must be implemented,

all of the requirements must be met, and the code must be functional in order for you to receive full credit.

During your implementation of the design, you must also fill out the PSP0 forms for the appropriate sections.

Furthermore, your code must conform to the Class Coding Standards.

Change Summary From Original Version

 Updated “Functionality” class diagram

 Added note about interfaces implemented using only “.h” files

 Modified submission requirements to include Moodle and Subversion

 Added method to SelectorForm

You may add to both the requirements specification and to the design specification. You must submit Word

documents containing the updated specifications that detail your additions. Note, for example, that the class

diagrams do not include constructors. These should be added as you define them for specific classes for any

classes that do not use the default constructor.

The exception is the Selector Form. You need not model any standard C++ windows form functionality.

However, you must create a GUI and update the model for program specific methods and attributes (e.g.,

getStringEntry()). Your form should look similar to the following:

Note that after the file is first written, the data file text box will be disabled.

The entry point for your program is CS325_09Fa_IP04_[NAME], where [NAME] is your last name and first letter

of your first name (e.g., MAYERG). Please do not include the braces (‘*‘ and ‘+’). Note that, as the “entry point”,

this means that main() is included in the implementation file. Also, there will be both a

‘CS325_09Fa_IP04_*NAME+.h’ and a ‘CS325_09Fa_IP04_*NAME+.cpp’ file. Note that interface classes will have

just a “.h” file (there is no implementation and, therefore, no implementation (“.cpp”) file.

CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 2 of 8

A revised requirements and/or design specification file should be named “IP04_*NAME+_Specs.doc”. Your code

and specifications should be archived as a zip file named “IP04_*NAME+.zip”. This zip archive is due to be

uploaded to Moodle no later than 11:00 AM on Monday, 19 October 2009. Your code, and associated revisions,

must also appear on your specific Subversion server. The latest version, time-stamped before 11 AM, will be

used to test your code. Keep configuration control. Your Moodle submission must match your Subversion

submission. Late submissions will be penalized per syllabus.

This assignment is worth 25 points. A maximum of 15 points will be assigned for your correct implementation of

the UML design and your code’s functionality. A maximum of 5 points will be assigned for your PSP0

documentation. A maximum of 5 points will be assigned for your revised specifications.

IP04 Requirements Specification

Requirements:

1. Count character string contents as the number of characters (including whitespace characters) in the

string. Character strings do not contain numbers (i.e., [0..9]).

2. Count numeric string contents (strings with all numbers [0..9] as characters) as the sum of each number

character in the string. For example, “9245” would have a count of 20 (9 + 2 + 4 + 5 = 20).

3. Show the count to the user and write count data to a file.

Use Case and Descriptions:

CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 3 of 8

Use Case Name: << abstract >> Count string contents
Related Requirements 1, 2, 3

Goal in Content A string is provided to the system to be counted and the count is written to a file
Preconditions [none]

Successful End Condition The characters in the string are properly counted and written to the file
Failed End Condition The string is not counted

Primary Actors User
Secondary Actors File

Trigger The user provides a string to the system to be counted
Main Flow Step Action

 1 The user specifies the type of string
 2 The user provides a string to be counted
 3 The string is counted per specified count type
 4 The count is provided to the user
 5 The count is written to the file
 include::Write count data

Extensions Step Branching Action
 2.1 The provided string is not of the specified type or is null
 2.2 The string is not counted

Use Case Name: Write count data
Related Requirements 3

Goal in Content A string count is written to a file
Preconditions The count is a valid integer

Successful End Condition The count is written to the file
Failed End Condition The count is not written to the file

Primary Actors File
Secondary Actors [none]

Trigger A “Count string contents” use case provides a string count result
Main Flow Step Action

 1 A count is provided to the system
 2 Ensure the file to be written is open
 3 The count is written to the file

Extensions Step Branching Action
 2.1 The file to be written is not open
 2.2 Open file
 extend::Specify data file, Condition:{file name != null}

CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 4 of 8

Use Case Name: Write count data
Related Requirements 3

Goal in Content The name of the file to which count data is written is provided to the system
Preconditions The file to which count data is written is not yet open

Successful End Condition A file name is provided to the system
Failed End Condition The default file name is used

Primary Actors User
Secondary Actors [none]

Trigger The user provides a file name string to the system
Main Flow Step Action

 1 A file name is provided to the system
 2 The system stores the user-specified file name
 3 A file with the specified name is opened and used to

write count data
Extensions Step Branching Action

 3.1 The count data file is already open
 2.2 The existing file is used to store count data

CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 5 of 8

IP04 Design Specification

Class Diagrams:

Program Entry View:

Note: While a “string” is specified, which might lead one to use the C string type, the developer may use the

“String” class, as long as a single string-type is used consistantly throughout the program.

CS 325.001 Software Engineering Fall 2009
Individual Project #4, Rev. 1 Chg. 1 (IP04R1C1) “String Counter” Due: Monday, 26 October 2009

Page 6 of 8

Functionality View:

CS 325.001 Software Engineering Fall 2009
Individual Project #4 (IP04) “String Counter” Due: Monday, 19 October 2009

Page 7 of 8

Sequence Diagrams:

Note: This sequence diagram need not be implemented exactly as shown. It is here to provide you a suggested approach. Depending on your

user form, the user could try to send the file name at any time. Your program should handle such cases.

CS 325.001 Software Engineering Fall 2009
Individual Project #4 (IP04) “String Counter” Due: Monday, 19 October 2009

Page 8 of 8

